Reproducción precisa de color en computo embebido para aplicaciones de monitoreo de riesgos del volcán

Autores/as

  • Yuriy Kotsarenko Investigador independiente
  • Volodymyr Grimalsky Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma de Estado de Morelos (UAEM), Cuernavaca, México
  • Anatoliy Kotsarenko Facultad de Ingeniería, Universidad Autónoma del Carmen (UNACAR), Ciudad del Carmen, México
  • Svetlana Koshevaya Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma de Estado de Morelos (UAEM), Cuernavaca, México

DOI:

https://doi.org/10.30973/progmat/2016.8.2/6

Palabras clave:

Computacion embebida, monitoreo de riesgos, espacios de color, volcan popocatepetl, precision perceptual

Resumen

Los dispositivos y computadoras embebidas con bajo consumo de energía se han vuelto una alternativa de bajo costo para aplicaciones de monitoreo de riesgos naturales, donde los datos son recolectados en tiempo real y son guardados, o transmitidos para procesamiento, como en el caso de volcán Popocatepetl. La precisión en colores sigue siendo un problema porla velocidad de procesamiento limitada en equipo embebido, tal como esta ilustrado en los experimentos de este trabajo, donde los espacios de color clásicos y precisos en forma perceptual, típicamente usados en equipos de escritorio, no son aptos para tales tareas. Sin embargo, las alternativas recientemente introducidas muestran potencial, proveyendo balance entre desempeño en tiempo real y precisión. Resultados experimentales con pruebas de desempeño corriendo en aparatos embebidos están descritos en este trabajo, proveyendo fundamentos fuertes para las alternativas propuestas.

Biografía del autor/a

Yuriy Kotsarenko, Investigador independiente

Dr. Yuriy Kotsarenko previously worked as a Lead R&D FM Architect in Embarcadero Technologies and is currently involved in research and development of new commercialgrade equipment and scientific applications. His areas of research interests include Computer Graphics, Embedded Hardware and Software Engineering and Optics. Latest research efforts are focused on development of autonomous equipment with embedded microprocessors for meteorological research and hazard monitoring. This includes designing, manufacturing, assembling and debugging electrical and electronic circuits, and creating high-performance software that will be doing real-time processing.

Volodymyr Grimalsky, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma de Estado de Morelos (UAEM), Cuernavaca, México

Volodymyr Grimalsky was graduated from T. Shevchenko Kiev National University in 1982, Physical Faculty, Theoretical Physics Dept. In 1986 he obtained PhD degree in physics from the same University. In 1986- 1997 V. Grimalsky worked as scientific researcher at Radiophysical Faculty of Kiev National University. In 1997 he was a visiting researcher in Large Millimeter Telescope Project in Mexico, National Institute for Astrophysics, Optics, and Electronics (INAOE). In 2000-2006 V. Grimalsky worked in Mexico in INAOE as the titular researcher. Since 2006 till present he works in the Autonomous University of State Morelos (UAEM) in the Center for Investigations in Engineering and Applied Science (CIICAp). V. Grimalsky in the author of about 150 scientific papers in the field of nonlinear waves, millimeter and terahertz waves, waves in geophysics and plasmas.

Anatoliy Kotsarenko, Facultad de Ingeniería, Universidad Autónoma del Carmen (UNACAR), Ciudad del Carmen, México

Anatoliy Kotsarenko obtained his Ph.D. in 1999 in Theoretical Physics at Physical Faculty of Kiev National University. He worked as researcher in in the UAEM in the CIICAp, associate researcher in in the Univ. of Electro Communication, Tokyo, Japan, senior researcher in Center of Geosciences, UNAM in Queretaro, Mexico and currently works at the Faculty for Engineering, Autonomous University of Carmen (UNACAR). His main research interests are various aspects of LAIC (Lithoshere-Atmosphere-Ionosphere Coupling) phenomena: electromagnetic, geophysical, geochemical, meteorological, etc. anomalies that accompany large earthquakes and volcano eruptions.

Svetlana Koshevaya, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma de Estado de Morelos (UAEM), Cuernavaca, México

Svetlana Koshevaya received the Diploma of Master from Faculty of Radiophysics, Physical Electronics Dept., Kiev University, in 1964, the Ph. D. in Radiophysics from Kiev Institute of Radioproblems, Kiev University in 1969, and the diploma of Doctor of Science, from Kiev University, in 1986. Dra. Koshevaya worked as Engineer (1964-1968), in Kiev Institute of Radioproblems, Ukraine. She was Junior Senior Research Scientist Research Scientist (1968-1970) in Kiev Institute of Radioproblems and Senior Research Scientist in Institute “Orion” (1979- 1972), Kiev, Ukraine. In Faculty of Radiophysics of Kiev National University, she was Senior Research Scientist (1972-1974), Principal Lecturer (1974-1980), Associate Professor (1980-1987) and Full Professor (1987 -1995). She was Titular Researcher “C” (1995- 1998), in INAOE, Puebla, Mexico. Since 1998, she is Titular Researcher “C” at CIICAp, Autonomous University of State Morelos (UAEM), Cuernavaca, Mexico. Her research interests include remote sensing system for seind volcano activity, photonics and submillimeter wave integrated technique, nonlinear radiolocation, and solitonics in nonlinear physics. She has 7 books (in Russia), two chapters in books published in English, one book with student in Spanish, 15 certificate of patents, 196 Papers in international journals and 143 Articles in Proceedings of Symposiums . She is member of Mexican Academia of Science, member of National System of Researchers (SNI) and Member of WHO IS WHO.

Citas

Robe Kotsarenko, A., Grimalsky, V., Medina Pérez, H. R., Urquiza Beltrán, G., Villegas Cerón, R. A., Lopez Cruz Abeyro, J. A., Valdés Gonzales, C. “Experimental studies of anomalous Radon activity in the Tlamacas mountain, volcano Popocatepetl area, Mexico: new tools to study Litosphere-Atmosphere coupling for forecasting volcanic and seismic events.” Annals of Geophysics 55, no. 1 (2012): 109-118. https://doi.org/10.4401/ag-5318

Juárez, A., C. Gay, and Y. Flores. “Impact of the Popocatepetl’s volcanic activity on the air quality of Puebla City, Mexico.” Atmósfera, 2005: 57-69.

Kotsarenko, A., Pérez-Enriquez, R., Lopez Cruz Abeyro, J. A., Grimalsky, V., Koshevaya, S., Valdez Gonzales, C., Yutsis, V., Alvarado Olmeda, J. A. “Geomagnetic Monitoring of the Volcano Popocatepetl.” Proceedings of the 6th International Conference “Problems of Geocosmos”, 2006: 370-374.

Hearn, Donald, and Pauline M. Baker. Computer Graphics, C Version. Prentice Hall, 1996.

Hill, Francis S. Computer Graphics using OpenGL. Prentice Hall, 2000.

Riemersma, Thiadmer. “Colour metric.” CompuPhase. May 26, 2008. http://www.compuphase.com/cmetric.htm (accessed October 26, 2008).

Kotsarenko, Yuriy, and Fernando Ramos. “Measuring perceived color difference using YIQ NTSC transmission color space in mobile applications.” Edited by Marco Antonio Cruz Chávez. Programación Matemática y Software, Vol. 2, No. 2 (December 2010). https://doi.org/10.30973/progmat/2010.2.2/3

Smith, Alvy Ray. “Color Gamut Transform Pairs.” SIGGRAPH 78 Conference Proceedings. 1978. 12-19. https://doi.org/10.1145/965139.807361

Çelik, Tantek, Chris Lilley, David L. Baron, Steven Pemberton, and Brad Pettit. “CSS Color Module Level 3.” W3C Official Site. Edited by Tantek Çelik, Chris Lilley and L. David Baron. World Wide Web Consortium. June 07, 2011. http://www.w3.org/TR/css3-color/ (accessed November 18, 2014).

Poynton, Charles. Digital Video and HDTV Algorithms and Interfaces. Morgan Kaufmann, 2003.

Schanda, Janos. Colorimetry: Understanding the CIE system. Wiley Interscience, 2007.

MacAdam, David L. “Visual Sensitivities to Color Differences in Daylight.” (Journal of the Optical Society of America) 32, no. 5 (May 1942): 247-273. https://doi.org/10.1364/JOSA.32.000247

Granger, E. M. “Is CIE L*a*b* Good Enough for Desktop Publishing?” Proceedings of SPIE, the International Society for Optical Engineering (Society of Photo Optical Instrumentation Engineers) 2170 (1994): 144-148. https://doi.org/10.1117/12.173842

Kotsarenko, Yuriy, and Fernando Ramos. “Quality Measurement of Exiting Color Metrics using Hexagonal Color Fields.” Edited by Marco Antonio Cruz Chávez. Programación Matemática y Software 1, no. 2 (December 2009). https://doi.org/10.30973/progmat/2010.1.2/3

Melgosa, M., J. J. Quesada, and E. Hita. “Uniformity of some recent color metrics tested with an accurate color-difference tolerance dataset.” Applied Optics (Optical Society of America) 33, no. 34 (1994): 8069-8077. https://doi.org/10.1364/AO.33.008069

Luo, M. R., G. Cui, and B. Rigg. “The Development of the CIE 2000 Colour-Difference Formula: CIEDE2000.” Color Research & Application 26, no. 5 (2001): 340-350.

Sharma, Gaurav, Wencheng Wu, and Edul N. Dalal. “The CIEDE2000 Color-Difference Formula: Implementation Notes, Supplementary Test Data, and Mathematical Observations.” Color Research and Application 30, no. 1 (February 2005): 21-30. https://doi.org/10.1002/col.1049

Guth, Lee S. “Further Applications of the ATD Model for Color Vision.” Proc. SPIE (The International Society for Optical Engineering) 2414 (April 1995): 12-26.

Büring, Hendrik. “Eigenschaften des Farbenraumes nach DIN 6176 (DIN99-Formel) und seine Bedeutung für die industrielle Anwendung.” 8. Workshop Farbbildverarbeitung der German Color Group, October 2002: 11-17.

Cui, G., M. R. Luo, B. Rigg, G. Roestler, and K. Witt. “Uniform Colour Spaces Based on the DIN99 Colour-Difference Formula.” Color Research & Application 27, no. 4 (2002): 282-290. https://doi.org/10.1002/col.10066

Rich, Danny C. “Publication CIE 159: A colour appearance model for colour management systems: CIECAM02.” Color Research and Application 31, no. 2 (April 2006): page 158. https://doi.org/10.1002/col.20198

Luo, Ronnier M., Guihua Cui, and Changjun Li. “Uniform Colour Spaces Based on CIECAM02 Colour Appearance Model.” Color Research & Application (Wiley InterScience) 31, no. 4 (June 2006): 320-330. https://doi.org/10.1002/col.20227

Sarifuddin, M., and Rokia Missaoui. “A New Perceptually Uniform Color Space with Associated Color Similarity Measure for Content-Based Image and Video Retrieval.” ACM SIGIR Workshop on Multimedia Information Retrieval, Salvador, Brazil, 2005.

Kotsarenko, Yuriy, and Fernando Ramos. “Simple perceptual color space for color specification and real time processing.” Edited by Ramón Rodríguez-Vera and Rufino Díaz-Uribe. 22nd Congress of the International Commission for Optics: Light for the Development of the World. Puebla: Proc. SIPE 8011, 2011. https://doi.org/10.1117/12.901997

Kotsarenko, Yuriy, and Fernando Ramos. “An alternative color space for color selection and image manipulation with improved brightness component.” Edited by Marco Cruz Chavez. 8th International Congress of Computing in Optimization and Software. Cuernavaca: Autonomous University of Morelos State (UAEM), 2011. pp. 204 - 220.

Descargas

Publicado

30-06-2016

Cómo citar

Kotsarenko, Y. ., Grimalsky, V., Kotsarenko, A., & Koshevaya, S. . (2016). Reproducción precisa de color en computo embebido para aplicaciones de monitoreo de riesgos del volcán. Programación matemática Y Software, 8(2), 39–45. https://doi.org/10.30973/progmat/2016.8.2/6

Número

Sección

Artículos

Artículos más leídos del mismo autor/a