Study, suspend and optimization a spread of epidemic infections. The dynamic Monte Carlo approach

Authors

  • Gennadiy Burlak Centro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos Av. Universidad 1001, Col. Chamilpa, C.P. 62210, Cuernavaca, Morelos, México

DOI:

https://doi.org/10.30973/progmat/2020.12.3/1

Keywords:

optimization of a spread of epidemic infections, dynamic Monte Carlo, numeric simulations

Abstract

We study a dynamics of the epidemiological infection spreading at different values of the risk factor β (a control parameter) with the using of dynamic Monte Carlo approach (DMC). In our toy model, the infection transmits due to contacts of randomly moving individuals. We show that the behavior of recovereds critically depends on the β value. For sub-critical values β <βc ~0.6 , the number of infected cases asymptotically converges to zero, such that for a moderate risk factor the infection may disappear with time. Our simulations shown that over time, the properties of such a system asymptotically become close to the critical transition in 2D percolation system. We also analyzed an extended system, which includes two additional parameters: the limits of taking on/ off quarantine state. It is found that the early quarantine off does result in the irregular (with positive Lyapunov exponent) oscillatory dynamics of infection. If the lower limit of the quarantine off is small enough, the recovery dynamics acquirers a characteristic nonmonotonic shape with several damped peaks. The dynamics of infection spreading in case of the individuals with immunity is studied too.

Author Biography

Gennadiy Burlak, Centro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos Av. Universidad 1001, Col. Chamilpa, C.P. 62210, Cuernavaca, Morelos, México

El Dr. Gennadiy Burlak ha trabajado como catedrático en la Universidad Nacional de Kiev, en el Departamento de Física Teórica. Tiene los grados de doctor en: Ph. D. y D. of Sc. Desde 1998 es Profesor-Investigador Titular “C” del Centro de Investigaciones en Ingeniería y Ciencias Aplicadas (CIICAp) de la Universidad Autónoma del Estado de Morelos (UAEM). Es miembro del SNI desde 2000 y actualmente tiene el nivel III. El Dr. Burlak es autor y coautor de 14 libros y capítulos de libros y más de 160 artículos en revistas internacionales. Ha participado en más de 170 ponencias en Congresos Nacionales e Internacionales. Bajo de su dirección se han graduado: 16 tesis de doctorado, maestría y licenciatura. Ha impartido cursos de electromagnetismo, ecuaciones derivadas parciales y métodos numéricos en el posgrado y licenciatura del CIICAp de la UAEM. Es miembro de la Academia de Ciencias de Morelos (ACMOR) de American Physical Society. Se ha desempeñado como evaluador, árbitro del CONACyT y como referí de varias revistas internacionales como lo son: Phys.Rev.Lett., Chaos, JVSTA, MMA,PIER, entre otros. Sus temas principales de investigación son: - Micro-esféricas multicapas, -Optimización de radiación óptica en nanoestructuras, - Dinámica no-lineal del Bose-Einstein condénsate, - Aplicaciones de redes neuronales en física cuántica y transición de fases en sistemas sólidos.

References

Corey, L., Mascola, J. R., Fauci, A. S., Collins, F. S. A strategic approach to COVID-19 vaccine R&D. Science. 20020, 368(6494), 948-950. https://doi.org/10.1126/science.abc5312

Coronavirus research updates: Potent human antibodies could inspire a vaccine, [En línea]. Available: https:// www.nature.com/articles/d41586-020-00502-w.

Choisy, M., Guégan, J. F., Rohani, P. Mathematical modeling of infectious diseases dynamics. Encyclopedia of infectious diseases: modern methodologies, John Wiley & Sons, 2007, 379-404. https://doi.org/10.4161/viru.24041

Barmparis, G. D., Tsironis, G. P. Estimating the infection horizon of COVID-19 in eight countries with a datadriven approach. Chaos, Solitons & Fractal. 2020, 135, 109842. https://doi.org/10.1016/j.chaos.2020.109842

E. B. Postnikov. Estimation of COVID-19 dynamics “on a back-of-envelope”: Does the simplest SIR model provide quantitative parameters and predictions?. Chaos, Solitons & Fractals, vol. 135, p. 109841, 2020. https://doi.org/10.1016/j.chaos.2020.109841

Ndairou, F., Area, I., Nieto, J. J., Torres, D. F. Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan. Chaos, Solitons & Fractals. 2020, 135, 109846. https://doi.org/10.1016/j.chaos.2020.109846

Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O. Novel type of phase transition in a system of self-driven particles. Physical review letter. 1995, 75(6), 1226. https://doi.org/10.1103/PhysRevLett.75.1226

Solon, A. P., Chaté, H., Tailleur, J. From phase to microphase separation in flocking models: The essential role of nonequilibrium fluctuations. Physical review letters. 2015, 114(6), 068101. https://doi.org/10.1103/PhysRevLett.114.068101

Solon, A. P., Tailleur, J. Flocking with discrete symmetry: The two-dimensional active Ising model. Physical Review E. 2015, 92(4), 042119. https://doi.org/10.1103/PhysRevE.92.042119

Press, W. H., Teukovsky, S. A., Vetterling, W. T., Flannery, B. P. Numerical recipes in C++. Cambridge: Cambridge University Press, 2002.

G. Grimmett. Percolation, second edition. Verlag: Springer, 1999.

M. B. Isichenko. Percolation, statistical topography, and transport in random media. Reviews of modern physics. 1992, 64(4), 961. https://doi.org/10.1103/RevModPhys.64.961

Stauffer, D., Aharony, A. Introduction to percolation theory. CRC press. 2018.

Burlak, G., Vlasova, M., Aguilar, P. M., Kakazey, M., XixitlaCheron, L. Optical percolation in ceramics assisted by porous clusters. Optics communications. 2009, 282(14), 2850-2856. https://doi.org/10.1016/j.optcom.2009.04.030

Burlak, G., Rubo, Y. G. Mirrorless lasing from light emitters in percolating clusters. Physical Review. 2015, 92(1), 013812. https://doi.org/10.1103/PhysRevA.92.013812

Wolf, A., Swift, J. B., Swinney, H. L., Vastano, J. A. Determining Lyapunov exponents from a time series. Physica D: Nonlinear Phenomena. 1985, 16(3), 285-317. https://doi.org/10.1016/0167-2789(85)90011-9

Chandrashekar, A., Liu, J., Martinot, A. J., McMahan, K., Mercado, N. B., Peter, L., ... Busman-Sahay, K. SARSCoV-2 infection protects against rechallenge in rhesus macaques. Science. 2020, 369, 812-817.

Downloads

Published

2020-10-30

How to Cite

Burlak, G. (2020). Study, suspend and optimization a spread of epidemic infections. The dynamic Monte Carlo approach. Programación Matemática Y Software, 12(3), 1–8. https://doi.org/10.30973/progmat/2020.12.3/1

Most read articles by the same author(s)

<< < 1 2