Calificación y optimización para la generación de un láser aleatorio con nano emisores
DOI:
https://doi.org/10.30973/progmat/2023.15.2/3Palabras clave:
Láser aleatorio, Nano emisores incorporados, poros aleatoriosResumen
En este trabajo se estudia el efecto láser sin espejos, el láser aleatorio de percolación en 3D. La diferencia con láser convencional es que el láser aleatorio contiene estructuras desordenadas que definen la frecuencia y la dirección en las que el láser aleatorio emite la luz y la emisión de este láser es coherente y estable. Se estudia el sistema semiclásico no lineal de las ecuaciones de Maxwell en 3D acoplado con ecuaciones de polarización y ecuaciones de cuatro niveles de los puntos cuánticos. Tal sistema es considerablemente no lineal, es complejo y no existe ninguna solución analítica. Por eso es de interés la generación del campo de láser numéricamente con el método de Diferencias Finitas en el Dominio del Tiempo (FDTD) 3D y con ayuda de los paquetes numéricos modernos microsoft visual studio (Visual C#). Se calcula de manera detallada el espectro de los modos ópticos localizados en el láser aleatorio de percolación.
Citas
Wiersma, D., van Albada, M., Lagendijk, A. Random laser?. Nature 373, 203–204 (1995). https://doi.org/10.1038/373203b0
Cao, H., Zhao, Y. G., Ho, S. T., Seelig, E. W., Wang, Q. H., Chang, R. P. H. Random laser action in semiconductor powder. Physical Review Letters (1999) , 82(11), 2278. https://doi.org/10.1103/PhysRevE.54.4256
Wang, L., Zhu, S. J., Wang, H. Y., Qu, S. N., Zhang, Y. L., Zhang, J. H., Sun, H. B. Common origin of green luminescence in carbon nanodots and graphene quantum dots. ACS Nano (2014), 8(3), 2541-2547. https://doi.org/10.1021/nn500368m
Wen, X., Yu, P., Toh, Y. R., Ma, X., Tang, J. On the upconversion fluorescence in carbon nanodots and graphene quantum dots. Chemical communications (2014), 50(36), 4703-4706. https://doi.org/10.1039/C4CC01213E
Letokhov, V. S. Quantum statistics of multi-mode radiation from an ensemble of atoms. Sov. Phys. JETP (1968), 26, 835-840.
Cao, H., Zhao, Y. G., Ho, S. T., Seelig, E. W., Wang, Q. H., Chang, R. P. H. Random laser action in semiconductor powder. Physical Review Letters (1999), 82(11), 2278. https://doi.org/10.1103/PhysRevLett.82.2278
Frolov, S. V., Vardeny, Z. V., Yoshino, K., Zakhidov, A., Baughman, R. H. Stimulated emission in high-gain organic media. Physical Review B (1999), 59(8), R5284. https://doi.org/10.1103/PhysRevB.59.R5284
Lawandy, N. M., Balachandran, R. M., Gomes, A. S. L., Sauvain, E. Laser action in strongly scattering media. Nature (1994), 368(6470), 436-438. https://doi.org/10.1038/368436a0
Meng, X., Fujita, K., Murai, S., & Tanaka, K. Coherent random lasers in weakly scattering polymer films containing silver nanoparticles. Physical Review A (2009), 79(5), 053817. https://doi.org/10.1103/PhysRevA.79.053817
Tiwari, A. K., Shadak Alee, K., Uppu, R., & Mujumdar, S. Single-mode, quasi-stable coherent random lasing in an amplifying periodic-on-average random system. Applied Physics Letters (2014), 104(13), 131112. https://doi.org/10.1063/1.4870631
Zyuzin, A. Y. Transmission fluctuations and spectral rigidity of lasing states in a random amplifying medium. Physical Review E (1995), 51(6), 5274. https://doi.org/10.1103/PhysRevE.51.5274
John, S., Pang, G. Theory of lasing in a multiple-scattering medium. Physical Review A (1996), 54(4), 3642. https://doi.org/10.1103/PhysRevA.54.3642
Vanneste, C., Sebbah, P., Cao, H. Lasing with resonant feedback in weakly scattering random systems. Physical Review Letters (2007), 98(14), 143902. https://doi.org/10.1103/PhysRevLett.98.143902
Uppu, R., Mujumdar, S. Lévy exponents as universal identifiers of threshold and criticality in random lasers. Physical Review A (2014), 90(2), 025801. https://doi.org/10.1103/PhysRevA.90.025801
Wiersma, D. S. The physics and applications of random lasers. Nature physics (2008), 4(5), 359-367. https://doi.org/10.1038/nphys971
John, S. Electromagnetic absorption in a disordered medium near a photon mobility edge. Physical Review Letters (1984), 53(22), 2169. https://doi.org/10.1103/PhysRevLett.53.2169
Anderson, P. W. The question of classical localization A theory of white paint?. Philosophical Magazine B (1985), 52(3), 505-509. https://doi.org/10.1080/13642818508240619
Lagendijk, A., Van Albada, M. P., van der Mark, M. B. Localization of light: The quest for the white hole. Physica A: Statistical Mechanics and its Applications (1986), 140(1-2), 183-190. https://doi.org/10.1016/0378-4371(86)90219-0
Conti, C., Fratalocchi, A. Dynamic light diffusion, three-dimensional Anderson localization and lasing in inverted opals. Nature Physics (2008), 4(10), 794-798. https://doi.org/10.1038/nphys1035
Burlak, G., Diaz-de-Anda, A., Karlovich, Y., Klimov, A. B. Critical behavior of nanoemitter radiation in a percolation material. Physics letters A (2009), 373(16), 1492-1499. https://doi.org/10.1016/j.physleta.2009.02.044
Taflove, A., Hagness, S. C., Piket-May, M. Computational electromagnetics: the finite-difference time-domain method. The Electrical Engineering Handbook (2005), 3, 629-670. https://doi.org/10.1016/B978-012170960-0/50046-3
Siegman, A. E. Lasers. University science books. (1986).
Jiang, X., Soukoulis, C. M. Time dependent theory for random lasers. Physical review letters (2000), 85(1), 70. https://doi.org/10.1103/PhysRevLett.85.70
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Jesús Jonathan Martínez Ocampo, Gannadiy Burlak
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Usted es libre de:
Compartir — compartir y redistribuir el material publicado en cualquier medio o formato. |
Adaptar — combinar, transformar y construir sobre el material para cualquier propósito, incluso comercialmente. |
Bajo las siguientes condiciones:
Atribución — Debe otorgar el crédito correspondiente, proporcionar un enlace a la licencia e indicar si se realizaron cambios. Puede hacerlo de cualquier manera razonable, pero de ninguna manera que sugiera que el licenciador lo respalda a usted o a su uso. |
Sin restricciones adicionales: no puede aplicar términos legales o medidas tecnológicas que restrinjan legalmente a otros a hacer cualquier cosa que permita la licencia. |