Novedoso Cosechador de Energía de Bajo Costo Basado en un Arreglo de Actuadores Piezoeléctricos

Autores/as

  • Sahiril Fernanda Rodríguez-Fuentes Universidad Autónoma del Estado de Morelos. IICBA-CIICAp. Maestría en Sustentabilidad Energética. Cuernavaca, Morelos. México https://orcid.org/0000-0002-1587-3053
  • Carlos Andrés Ferrara-Bello Universidad Autónoma del Estado de Morelos. IICBA-CIICAp. Doctorado en Ingeniería y Ciencias Aplicadas. Cuernavaca, Morelos. México https://orcid.org/0000-0003-4054-1728
  • Margarita Tecpoyotl-Torres Universidad Autónoma del Estado de Morelos. Centro de Investigación en Ingeniería y Ciencias Aplicadas, IICBA-CIICAp. Cuernavaca, Morelos. México https://orcid.org/0000-0002-4336-3771

DOI:

https://doi.org/10.30973/progmat/2024.16.1/3

Palabras clave:

Método de Elemento Finito, dispositivos de bajo consumo, vibración, transductor piezoeléctrico

Resumen

En este artículo se presenta el diseño, modelado, fabricación y pruebas de un cosechador de energía proveniente de vibraciones mecánicas, basado en un material piezoeléctrico. Este dispositivo trabaja bajo el principio de transducción piezoeléctrica, es decir que, al deformarse mecánicamente, debido a las vibraciones genera energía eléctrica. El material piezoeléctrico usado en la fabricación fue Zirconato Titanato de Plomo (PZT), y latón como base estructural. Además, se realizaron modelos de elemento finito para predecir la frecuencia del primer modo de vibración del dispositivo, y arreglos experimentales para su validación. La frecuencia de resonancia del modelo numérico y la obtenida experimentalmente (19 Hz) muestran una desviación de 5.03% respectivamente. La potencia generada es de 0.202 mW suficiente para alimentar dispositivos de bajo consumo, tales como calculadoras básicas, relojes de pulsera y transistores, entre otros.

Biografía del autor/a

Sahiril Fernanda Rodríguez-Fuentes, Universidad Autónoma del Estado de Morelos. IICBA-CIICAp. Maestría en Sustentabilidad Energética. Cuernavaca, Morelos. México

Graduated from the Autonomous University of the State of Morelos, of the Bachelor of Technology with terminal area in Applied Physics in 2019, she conducted a Research on Design of a microelectromechanical clamp driven by a chevron actuator, her main areas of interest are MEMS, and energy harvesters. He is currently studying the master's degree in energy sustainability at the Center for Research in Engineering and Applied Sciences developing research on the design of an energy harvester based on piezoelectric sensing. He has collaborated in publications of various scientific articles in national and international journals on topics of microelectromechanical systems, such as microgrippers or accelerometers, as well as in energy sehcadores.

Carlos Andrés Ferrara-Bello, Universidad Autónoma del Estado de Morelos. IICBA-CIICAp. Doctorado en Ingeniería y Ciencias Aplicadas. Cuernavaca, Morelos. México

MICA. Carlos Andrés Ferrara Bello studied the Bachelor's Degree in Electrical Engineering, at the Autonomous University of the State of Morelos (UAEM) obtaining the highest average of the generation, as well as recognitions for participating in different competitions related to the application of engineering. He obtained a Master's Degree in Engineering and Applied Sciences at the Center for Research in Engineering and Applied Sciences (CIICAp) located within the UAEM, graduating with honors. He has supported the publication of several scientific articles in international journals being the main author in two journals.  He is currently studying his doctorate at CIICAP, where he has taught the subjects Discrete Mathematics and Microcontrollers.  

Margarita Tecpoyotl-Torres, Universidad Autónoma del Estado de Morelos. Centro de Investigación en Ingeniería y Ciencias Aplicadas, IICBA-CIICAp. Cuernavaca, Morelos. México

Margarita Tecpoyotl Torres received the Mathematician degree from the University of Puebla, Mexico (1991). She was also graduated as Electronic Engineer (1993). She received the M.Sc. and Ph.D. degrees in Electronics from National Institute of Astrophysics, Optics and Electronics, INAOE, México (1997 and 1999, respectively). Dr. Tecpoyotl works, since 1999, at UAEM, Mexico, where she is currently titular professor. She has been visiting research scientist at University of Bristol (2001), UK. She led the Winner team of Boot Camp, UAEM Potential, obtaining support to participate in Full Immersion Program, USA (2014). She was co-founder of INNTECVER (2014). She won the 3rd place in the Royal Academy of Engineering´s Leaders in Innovation Fellowships final pitch session, in UK (2015). Her main research interest includes MEMS, Antenna design, entrepreneurship, innovation; and development of educational programs. She holds the status of National Researcher (SNI), since 1999.

Citas

Covaci, C., Gontean, A. Piezoelectric energy harvesting solutions: A review. Sensors. 2020, 20, 1–37. https://doi.org/10.3390/s20123512.

Howells, C.A. Piezoelectric energy harvesting. Energy Conversion and Management. 2009, 50(7), 1847–1850. https://doi.org/10.1016/j.enconman.2009.02.020.

Nia, E. M., Zawawi, N. A. W. A., Singh, B. S. M. (2018). A review of walking energy harvesting using piezoelectric materials. IOP Conference Series: Materials Science and Engineering. 2018, 291(1). https://doi.org/10.1088/1757-899X/291/1/012026.

Elvira-Hernández, E.A., Anaya-Zavaleta, J.C., Martínez-Cisneros, E., López-Huerta, F., Aguilera-Cortés, L.A., Herrera-May, A.L. Electromechanical modeling of vibration-based piezoelectric nanogenerator with multilayered cross-section for low-power consumption devices. Micromachines. 2020, 11(9). https://doi.org/10.3390/MI11090860.

Friswell, M.I., Adhikari, S. Sensor shape design for piezoelectric cantilever beams to harvest vibration energy. Journal of Applied Physics. 2010, 108(1). https://doi.org/10.1063/1.3457330.

Beeby, S.P., Tudor, M.J., White, N.M. Energy harvesting vibration sources for microsystems applications. Measurement Science and Technology. 2006, 17(12). https://doi.org/10.1088/0957-0233/17/12/R01.

Anton, S.R., Sodano, H.A. A review of power harvesting using piezoelectric materials (2003-2006). Smart Materials and Structures. 2007, 16(3). https://doi.org/10.1088/0964-1726/16/3/R01.

Siddique, A.R.M., Mahmud, S., Van Heyst, B. Energy conversion by ‘T-shaped’ cantilever type electromagnetic vibration based micro power generator from low frequency vibration sources. Energy Conversion and Management. 2017, 133, 399–410. https://doi.org/10.1016/j.enconman.2016.10.059.

Izadgoshasb, I., Lim, Y.Y., Lake, N., Tang, L., Vázquez Padilla, R., Kashiwao, T. Optimizing orientation of piezoelectric cantilever beam for harvesting energy from human walking. Energy Conversion and Management. 2018, 161, 66–73. https://doi.org/10.1016/j.enconman.2018.01.076.

Toprak, A., Tigli, O. MEMS Scale PVDF-TrFE-Based Piezoelectric Energy Harvesters. Journal of Microelectromechanical Systems. 2015, 24(6), 1989–1997. https://doi.org/10.1109/JMEMS.2015.2457782.

Platt, S. R., Farritor, S., Haider, H. On Low-frequency electric power generation with PZT ceramics. IEEE/ASME Transactions on Mechatronics. 2005, 10(2), 240–252. https://doi.org/10.1109/TMECH.2005.844704.

Ma, T., Ding, Y., Wu, X., Chen, N., Yin, M. Research on piezoelectric vibration energy harvester with variable section circular beam. Journal of Low Frequency Noise Vibration and Active Control. 2021, 40(2), 753–771. https://doi.org/10.1177/1461348420918408.

Sodano, H. A., Inman, D.J., Park, G. Comparison of piezoelectric energy harvesting devices for recharging batteries. Journal of Intelligent Material Systems and Structures. 2005, 16(10), 799–807. https://doi.org/10.1177/1045389X05056681.

Andosca, R., McDonald, T. G., Genova, V., Rosenberg, S., Keating, J., Benedixen, C., Wu, J. Experimental and theoretical studies on MEMS piezoelectric vibrational energy harvesters with mass loading. Sensors and Actuators A: Physical. 2012, 178, 76–87. https://doi.org/10.1016/j.sna.2012.02.028.

Marzencki, M., Ammar, Y., Basrour, S. Integrated power harvesting system including a MEMS generator and a power management circuit. Sensors and Actuators, A: Physical. 2008, 145–146 (1–2), 363–370. https://doi.org/10.1016/j.sna.2007.10.073.

Kurmendra, Kumar, R. Design analysis, modeling and simulation of novel rectangular cantilever beam for MEMS sensors and energy harvesting applications. International Journal of Information Technology. 2017, 9(3), 295–302. https://doi.org/10.1007/s41870-017-0035-6.

Liu, H., Zhong, J., Lee, C., Lee, S. W., Lin, L. A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications. Applied Physics Reviews. 2018, 5. https://doi.org/10.1063/1.5074184.

Zhao, D., Wang, Y., Shao, J., Zhang, P., Chen, Y., Fu, Z., Wang, S., Zhao, W., Zhou, Z., Yuan, Y., Fu, D. Zhu, Y.. Temperature and humidity sensor based on MEMS technology. AIP Advances. 2021, 11(8). https://doi.org/10.1063/5.0053342.

Erturk, A., Inman, D.J. An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Materials and Structures. 2009, 18(2). https://doi.org/10.1088/0964-1726/18/2/025009.

Leadenham, S., Erturk, A. Unified nonlinear electroelastic dynamics of a bimorph piezoelectric cantilever for energy harvesting, sensing, and actuation. Nonlinear Dynamics. 2015, 79(3), 1727–1743. https://doi.org/10.1007/s11071-014-1770-x.

Costanzo, S., Venneri, F., Dimassa, G., Borgia, A., Costanzo, A., Raffo, A. Fractal reflectarray antennas: State of art and new opportunities. International Journal of Antennas and Propagation. 2016, 2016. https://doi.org/10.1155/2016/7165143.

Kim, H. S., Kim, J. H., Kim, J. A review of piezoelectric energy harvesting based on vibration. International Journal of Precision Engineering and Manufacturing. 2011, 12(6), 1129–1141. https://doi.org/10.1007/s12541-011-0151-3.

Platt, S. R., Farritor, S., Garvin, K., Haider, H. The use of piezoelectric ceramics for electric power generation within orthopedic implants. IEEE/ASME Transactions on Mechatronics. 2005, 10(4), 455–461. https://doi.org/10.1109/TMECH.2005.852482.

Yang, H., Wang, L., Hou, Y., Guo, M., Ye, Z., Tong, X., Wang, D. Development in Stacked-Array-Type Piezoelectric Energy Harvester in Asphalt Pavement. Journal of Materials in Civil Engineering. 2017, 29(11). https://doi.org/10.1061/(asce)mt.1943-5533.0002079.

Jiang, X., Li, Y., Li, J., Wang, J., Yao, J. Piezoelectric energy harvesting from traffic-induced pavement vibrations. Journal of Renewable and Sustainable Energy, 2014, 6(4). https://doi.org/10.1063/1.4891169.

Lu, J., Zhang, L., Yamashita, T., Takei, R., Makimoto, N., Kobayashi, T. A Silicon Disk with Sandwiched Piezoelectric Springs for Ultra-low Frequency Energy Harvesting. Journal of Physics: Conference Series. 2015, 660(1). https://doi.org/10.1088/1742-6596/660/1/012093.

Tang, G., Yang, B., Hou, C., Li, G., Liu, J., Chen, X., Yang, C. A piezoelectric micro generator worked at low frequency and high acceleration based on PZT and phosphor bronze bonding. Scientific Reports. 2016, 6, 2–11. https://doi.org/10.1038/srep38798.

Selvan, K. V., Mohamed Ali, M. S. Micro-scale energy harvesting devices: Review of methodological performances in the last decade. Renewable and Sustainable Energy Reviews, 2016, 54, 1035–1047. https://doi.org/10.1016/j.rser.2015.10.046.

Damjanovic, D. Piezoelectricity. Encyclopedia of Condensed Matter Physics. 2005, 300–309. https://doi.org/10.1016/B0-12-369401-9/00433-2.

Kong, L.B., Li, T., Hng, H.H., Boey, F., Zhang, T., Li, S. Waste Energy Harvesting Mechanical and Thermal Energies, Springer Lecture Notes in Energy. 24. https://doi.org/10.1007/978-3-642-54634-1.

Roundy, S., Leland, E.S., Baker, J., Carleton, E., Reilly, E., Lai, E., Otis, B., Rabaey, J.M., Wright, P.K., Sundararajan, V. Improving power output for vibration-based energy scavengers. IEEE Pervasive Computing. 2005, 4(1), 28–36. https://doi.org/10.1109/mprv.2005.14.

Haghbin, N. Shoe embedded air pump type piezoelectric power harvester. [dissertation] Toronto: University of Queensland. 2007.

Toshiyoshi, H., Ju, S., Honma, H., Ji, C. H., Fujita, H. MEMS vibrational energy harvesters. Science and Technology of Advanced Materials. 2019, 20(1), 124–143. https://doi.org/10.1080/14686996.2019.1569828.

2024-16-01-03

Publicado

01-02-2024

Cómo citar

Rodríguez-Fuentes, S. F., Ferrara-Bello, C. A., & Tecpoyotl-Torres, M. (2024). Novedoso Cosechador de Energía de Bajo Costo Basado en un Arreglo de Actuadores Piezoeléctricos. Programación matemática Y Software, 16(1), 22–34. https://doi.org/10.30973/progmat/2024.16.1/3

Número

Sección

Artículos

Artículos más leídos del mismo autor/a