Una incursión al aprendizaje profundo para la regulación de procesos

Autores/as

  • Alejo Mosso Vázquez Departamento de Mecatrónica, Instituto Tecnológico Superior de Calkiní en el Estado de Campeche Av. Ah-Canul S/N Col. San Felipe CP 24900, Calkiní, Campeche, México
  • José Alfredo Hernández-Pérez Centro de Investigación en Ingeniería y Ciencias Aplicadas,UAEM Av. Universidad No. 1001, Col. Chamilpa, Cuernavaca, Morelos, CP 62209, México
  • G. Nagarajan I.C.E. Division, Department of Mechanical Engineering, Anna University,Chennai 600 025 India.
  • David Juárez-Romero Centro de Investigación en Ingeniería y Ciencias Aplicadas,UAEM Av. Universidad No. 1001, Col. Chamilpa, Cuernavaca, Morelos, CP 62209, México.

DOI:

https://doi.org/10.30973/progmat/2021.13.2/4

Palabras clave:

Construcción de modelos, Validación de modelos, Modelo Predictivo, Aprendizaje Profundo, Aprendizaje por Refuerzo

Resumen

Un modelo que representa un proceso físico suele estar compuesto por ecuaciones de conservación, mecanismos de transferencia y ecuaciones cerradas. Estas ecuaciones varían en el grado de certeza. Este artículo describe la incorporación de modelos físicos y empíricos. La parte empírica está construida por Aprendizaje Profundo. Este trabajo describe los principios que han impulsado al Aprendizaje Profundo como herramienta complementaria para la aproximación de la ingeniería de procesos cuando se utiliza para el control basado en modelos. Además de la estabilidad y precisión para hacer frente a perturbaciones no medidas, una estrategia robusta es utilizar el Aprendizaje por Refuerzo. Por lo tanto, también se describen los principios de esta estrategia.

Biografía del autor/a

Alejo Mosso Vázquez, Departamento de Mecatrónica, Instituto Tecnológico Superior de Calkiní en el Estado de Campeche Av. Ah-Canul S/N Col. San Felipe CP 24900, Calkiní, Campeche, México

Recibió el grado de Ingeniero en Comunicaciones y Electrónica de la Escuela Superior de Ingeniería Mecánica y Eléctrica del Instituto Politécnico Nacional (IPN) de México en 1975. Es maestro en ciencias con especialidad en Control por el CINVESTAV- IPN en México 1986. Es también maestro en ciencias en sistemas de la manufactura con especialidad en Robótica por el ITESM–UT (USA) en 1993. También obtuvo el grado de Doctor en Ingeniería y Ciencias Aplicadas en Cuernavaca Morelos, México en 2012 por el CIICAP-UAEM. Sus intereses de investigación son Programación Matemática aplicada a la Robótica Humanoide, Control Automático y Redes Neuronales – Deep Learning.

José Alfredo Hernández-Pérez, Centro de Investigación en Ingeniería y Ciencias Aplicadas,UAEM Av. Universidad No. 1001, Col. Chamilpa, Cuernavaca, Morelos, CP 62209, México

received a Professional Diploma in chemical engineering from Veracruzana University (Veracruz). He received an M.S. degree in food science from Instituto Tecnológico de Veracruz (Veracruz) and a Ph.D. degree in process engineering from École Nationale Supérieure des Industries Agricoles et Alimentaires (Paris, France). He works mainly on artificial intelligence in engineering processes. His research interests include modeling and simulation processes, optimization, and state estimation with application in heat and mass transfer processes and image analysis. He has published more than 110 articles. He is also a Reviewer for Neurocomputing, Energy, International Journal of Heat and Mass Transfer, International Journal of Thermal Sciences, International Journal of Refrigeration, Journal of Food Engineering, JAFC, MPE, Desalination, WASJ, RMCG, CABEQ, IJACT, Arabian JSE, Desalination and Water Treatment, IJEIS, IJTS, LAAR, and others. Finally, he is a member of the editor board of Computational Intelligence and Neuroscience (Impact Factor 2.28 according to the 2020 Journal Citation Reports released by Clarivate Analytics in 2018).

G. Nagarajan, I.C.E. Division, Department of Mechanical Engineering, Anna University,Chennai 600 025 India.

Prof. G. Nagarajan works at Internal Combustion Engine at Anna University, Chennai, 600-025 INDIA. His expertise covers different types of engines for car manufacture, from internal combustion up to electrical engines. His research also deals with the efficiency of energy cycles. He has developed projects with the auto-manufacturer Land rover. Expertise: Automobile Engineering. I.C Engines, Thermal related areas. Recognitions: Paper titled "Enhancing the Wear Resistance of Case Carburized Steel (En 353) by Cryogenic Treatment" published in Cryogenics Journal was listed in the TOP 25 Hottest Articles, January -March 2006. Paper titled "An Experimental Investigation on DI Diesel Engine with Hydrogen Fuel" published in Renewable Energy Journal was listed in the TOP 25 Hottest Articles, January - March 2008. Paper titled "Performance, Emission and Combustion Studies of a DI Diesel Engine Using Distilled Tire Pyrolysis Oil-Diesel Blends" published in Fuel Processing Technology Journal was listed in the TOP 25 Hottest Articles, January -March 2008.

David Juárez-Romero, Centro de Investigación en Ingeniería y Ciencias Aplicadas,UAEM Av. Universidad No. 1001, Col. Chamilpa, Cuernavaca, Morelos, CP 62209, México.

David Juárez-Romero realizó su licenciatura en Ingeniería Química en la Fac. Química-UNAM, y sus estudios de maestría y doctorado en el Colegio Imperial de la Universidad de Londres, U. K. Su línea de investigación es “la mejora del Diseño y la operación de procesos de separación-transformación relacionados con máquinas de energía”. Desarrolla metodologías para analizar, diseñar, y controlar estos procesos. Pertenece al Sistema Nacional de Investigadores. Computación (2009), y Maestro en Ciencias de la Computación (2008) por la Universidad Autónoma de Aguascalientes (UAA). Graduado de la Licenciatura en Informática por el Instituto Tecnológico de Aguascalientes (2004).

Citas

W. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics., Vol. 5, pp. 115–133, 1943. https://doi.org/10.1007/BF02478259

F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization in the brain, Psychological Review, Vol. 65, pp. 386– 408, 1958. https://psycnet.apa.org/doi/10.1037/h0042519

M. Minsky and S. Papert. Perceptrons, Cambridge, MA: MIT Press, 1969.

Rumelhart, D.E., Hinton, G. E. and Williams, R. J. Learning Internal Representation by Error Propagation. In D. E. Rumelhart and J. L. McClelland, eds., Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Cambridge, MA: MIT Press, 1986.

Hinton, G. E., Osindero, S. and Yee-Whye The. A Fast Learning Algorithm for Deep Belief Nets. Neural Computation 18, 1527–1554 (2006). Massachusetts Institute of Technology. https://doi.org/10.1162/neco.2006.18.7.1527

Hagan, M. T., H. B. Demuth, M. H. Beale and Orlando De Jesús. Neural Network Design. Editorial : Martin Hagan; 2nd edition, 2014.

Dong, H., Z. Ding and S. Zhang. Deep Reinforcement Learning – Fundamentals, Research and Applications. Springer, 2020. https://doi.org/10.1007/978-981-15-4095-0

Bengio, Y. Learning Deep Architectures for AI. Foundations and Trends in Machine Learning, Vol. 2, No. 1 (2009) 1–127. http://dx.doi.org/10.1561/2200000006

Goodfellow I., Y. Bengio and A. Courville. Deep Learning. MIT Press, (2016)

Amini A. "Introduction to Deep Learning". MIT 6.S191 (2020)

Tribus, M., & McIrvine, E. C. . Energy and information. Scientific American, (1971) 225(3), 179-190. https://www.jstor.org/stable/24923125

Dennis, J., R.B. Schnabel R. Numerical Methods for Unconstrained optimization and Nonlinear equations. SIAM, (1996).

Koller D., N. Friedman. Probabilistic Graphical Models. The MIT Press, (2009).

Hernandez J.A. , R.J. Romero, D. JuárezRomero, R.F. Escobar, J. Siqueiros. A. Neural network approach and thermodynamic model of waste energy recovery in a heat transformer in a water purification processes. Desalination (ISSN: 0011-9164) (2009) 243, pp 273-285. https://doi.org/10.1016/j.desal.2008.05.015

Griewank A., G. F. Corliss Automatic Differentiation of Algorithms, SIAM(1991)

Juarez-Romero D., Molina-Espinoza J. M. , Zamora-Moctezuma J. R., Leder R. Evaluating Algorithmic Properties of Dynamic Simulation Models by Operating Overloading. Memorias de Simposium de Software y Optimización, Cuernavaca, Mor, CICOS09, Cuernavaca (2009)ISBN 978-607-00-1970-8

Innes M. , Differentiable Programming with Julia, Mar21, London Users Group Meeting, (2019).

Martens, J. . Deep learning via hessian-free optimization. In International Conference on Machine Learning (ICML-10),(2010, June) Vol. 27, pp. 735-742.

Nocedal, J. and Wright S. J. Numerical Optimization. Springer (1999)

LeBlanc T.J., M. Scott and C.M. Brown. Large-Scale parallel Programming Experience with the BBN Buterfly Parallel processor. Comp. Sci. Report, U. Rochester, (1988). https://doi.org/10.1145/62115.62131

Müller, D., Esche, E., and Wozny, G. An algorithm for the identification and estimation of relevant parameters for optimization under uncertainty. Computers & Ehemical Engineering, (2014) 71, 94-103. https://doi.org/10.1016/j.compchemeng.2014.07.007

Niesser M. http://niesser.github.10/12DL (2020)

Yuan Z. and K.E. Herold Using a Multiproperty Free Energy Correlation. HVAC&R Research, (2005) v 11, 3 p377-393.

Beale M.H., M.T. Hagan, Howard B. Demuth. Deep Learning Toolbox. UG, Mathworks (2020).

Zu K. , E. A. Müller. Generating a Machine Learned Equation of State for Fluid Properties. ArXiv, (2020).

Bishop C. Pattern Recognition and Machine learning. Springer.(2006)

Björk A., Numerical Methods for LeastSquares Problems. SIAM (2006)

Qin S.J. Integrated Framework of Systems, Data, and Industrial Intelligence towards Industry 4.0. Abstract of Plenary talk - IFAC conference, july, Germany (2020).

Tran, T., Marsh, L., & Hunjet, R. Reinforcement Learning with Model Predictive Control-Recent Development. Conference paper, ICOCTA, Sidney (2019).

Descargas

Publicado

04-06-2021

Cómo citar

Mosso Vázquez, A., Hernández-Pérez, J. A., Nagarajan, G., & Juárez-Romero, D. (2021). Una incursión al aprendizaje profundo para la regulación de procesos. Programación matemática Y Software, 13(2), 39–53. https://doi.org/10.30973/progmat/2021.13.2/4

Número

Sección

Artículos

Artículos más leídos del mismo autor/a