Wavefront generation in parallel through GPUs, with application in seismic tomography

Authors

  • Alejandro Jimenez Xelhuantzi Instituto Tecnológico de Apizaco, Carretera Apizaco - Tzompantepec esquina con Av. Instituto Tecnológico S/N, Conurbado Apizaco - Tzompantepec, Tlaxcala, México., C.P. 90300.
  • Alfredo Oscar Matlalcuatzi Sandoval Instituto Tecnológico de Apizaco, Carretera Apizaco - Tzompantepec esquina con Av. Instituto Tecnológico S/N, Conurbado Apizaco - Tzompantepec, Tlaxcala, México., C.P. 90300.
  • José Federico Ramírez Cruz Instituto Tecnológico de Apizaco, Carretera Apizaco - Tzompantepec esquina con Av. Instituto Tecnológico S/N, Conurbado Apizaco - Tzompantepec, Tlaxcala, México., C.P. 90300.
  • José Crispín Hernández Hernández Instituto Tecnológico de Apizaco, Carretera Apizaco - Tzompantepec esquina con Av. Instituto Tecnológico S/N, Conurbado Apizaco - Tzompantepec, Tlaxcala, México., C.P. 90300.
  • Edmundo Bonilla Huerta Instituto Tecnológico de Apizaco, Carretera Apizaco - Tzompantepec esquina con Av. Instituto Tecnológico S/N, Conurbado Apizaco - Tzompantepec, Tlaxcala, México., C.P. 90300.

DOI:

https://doi.org/10.30973/progmat/2017.9.3/4

Keywords:

Parallel finite-difference calculation of traveltimes, Parallel computing, CUDA C

Abstract

In the field of the seismic tomography studies are make of the subsoil that seek to understand the composition of the earth’s crust and find minerals, and the last one is one of the most common practices. For those studies seismic wave velocities models are implemented through the earth’s crust, caused by natural or artificial sources. In this paper we present the parallelization of wavefront generation implemented in NVIDIA GPUs using CUDA. In this way we got an acceleration of up to 6.1 times is achieved forseven test casesin comparison to the alternative in sequential computing, but this acceleration can be greater.

Author Biography

Alejandro Jimenez Xelhuantzi, Instituto Tecnológico de Apizaco, Carretera Apizaco - Tzompantepec esquina con Av. Instituto Tecnológico S/N, Conurbado Apizaco - Tzompantepec, Tlaxcala, México., C.P. 90300.

  

References

Rawlinson, N. Seismic tomografhy: A window into deep earth. Physics of the Earth and Planetary Interiors. 2010. DOI: https://doi.org/10.1180/0026461026650061

Backus, G., Gilbert, F. Constructing P-velocity models to fit restricted sets of traveltime data. Bulletin Seismological Society of America. 1969, 59, 1407–1414. https://doi.org/10.1785/BSSA0590031407

Ramírez, J. F., Fuentes, O., Romero, R., Velasco. A Hybrid Algorithm for Crustal Velocity Modeling. Advances in Computational Intelligence. 2013. https://doi.org/10.1007/978-3-642-37798-3_29

Vidale, Jhon E. Finite-difference calculation of traveltimes in three dimensions. GEOPHYSICS. 1990, 55 (5), 521-526. https://doi.org/10.1190/1.1442863

Vidale, Jhon E. Finite-Diference calculation of traveltimes. Bulletin Seismological Society of America. 1988, 78 (6), 2062-2076. https://doi.org/10.1785/0120110125

Vidale, Jhon E. Waveform effects of a high-velocity. GEOPHYSICS. 1987, 14, 542-545. https://doi.org/10.1029/GL014i005p00542

NVIDIA. CUDA C. Programming Guide. Recuperado el 3 de Marzo de 2017, http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html. 2017.

Blaise, B. Introduction to Parallel Computing. Lawrence Livermore National Laboratory 2016.

Eijkhout, V. Introduction to High Performance Scientific Computing. Public drafty. 2016. 2.

Carreón, E., Ramírez, J. F., Hernández, C. Algoritmo híbrido paralelo evolutivo para aplicaciones en tomografía sísmica. Instituto Tecnológico de Apizaco. 2015.

Cantú-Paz, E. A summary of research on parallel genetic algorithms.1995.

Rüger, A. Aspects of Modern Raytracing Application Design, Studia Geophysica et Geodaetica. 2004,48,143-165. https://doi.org/10.1023/B:SGEG.0000015589.72402.51

Lewei, Mo., Jerry, M., Calculation of direct arrival traveltimes by the eikonal equation, SEG Technical Program Expanded Abstracts. 1994. 779-782. https://doi.org/10.1190/1.1931990

Hole, J. A. Nonlinear high-resolution three-dimensional seismic travel time tomography. Journal of Geophysical Research. 1992.https://doi.org/10.1029/92JB00235

Q. Liu, Y.J. Gu. Seismic imaging: From classical to adjoint tomography. Elsevier – Tectonophysics. 2012. https://doi.org/10.1016/j.tecto.2012.07.006

Dziewonski, A.M., Anderson, D.L. Preliminary reference Earth model. Physics of the Earth and Planetary Interiors. 1981, 25, 297-356.

Julian, B. R. and D., Gubbins. Three-dimensional seismic ray tracing. J. Geophys. 1977, 95-114.

Cerveny, V., I. A. Molotkov and I. Psencik. Ray methods in seismology. University of Karlova Press, Prague. 1977. https://doi.org/10.1785/BSSA0780062062

Kirk, D. B. and Hwu, W.-m. W. Programming Massively Parallel Processors: A Hands on Approach. Morgan Kaufmann Publishers Inc. 2010.1.

Published

2017-12-15

How to Cite

Jimenez Xelhuantzi, A., Matlalcuatzi Sandoval, A. O., Ramírez Cruz, J. F., Hernández Hernández, J. C., & Bonilla Huerta, E. (2017). Wavefront generation in parallel through GPUs, with application in seismic tomography. Programación Matemática Y Software, 9(3), 25–35. https://doi.org/10.30973/progmat/2017.9.3/4