Metodología de diseño basada en FPGA para la predistorsión digital de amplificadores de potencia

Autores/as

  • José Alejandro Galaviz Aguilar Centro de Investigación y Desarrollo de Tecnología Digital, Instituto Politécnico Nacional. Av. Instituto Politécnico Nacional 1310, Mesa de Otay, CP 22150, Tijuana, BC, México.
  • José Ricardo Cárdenas-Valdez Centro de Investigación y Desarrollo de Tecnología Digital, Instituto Politécnico Nacional. Av. Instituto Politécnico Nacional 1310, Mesa de Otay, CP 22150, Tijuana, BC, México.
  • J. Apolinar Reynoso-Hernández Centro de Investigación Científica y de Educación Superior de Ensenada. Carretera Ensenada-Tijuana 3918, Zona Playitas, CP 22860, Ensenada, BC, México.
  • Christian Gontrand Université de Lyon. INSA-Lyon, INL, CNRS UMR5270, Villeurbanne, F-69621, France.
  • José Cruz Núñez Pérez Centro de Investigación y Desarrollo de Tecnología Digital, Instituto Politécnico Nacional. Av. Instituto Politécnico Nacional 1310, Mesa de Otay, CP 22150, Tijuana, BC, México.

DOI:

https://doi.org/10.30973/progmat/2013.5.2/5

Palabras clave:

FPGA, amplificador de potencia, predistorsión digital, sistema lineal, tabla de búsqueda

Resumen

Este artículo describe el diseño e implementación de un sistema de predistorsión digital (DPD) sin memoria para la linealización de amplificadores de potencia. El prototipo del sistema y la arquitectura se implementaron usando un kit de desarrollo DSP-FPGA. La metodología de diseño es descrita en bloques prácticos y analizada en detalle con énfasis especial en el dominio digital, donde se ejecutaron los algoritmos propuestos. La estrategia del sistema predistorsionador está basada en una tabla de búsqueda compleja que permite programar las curvas de conversión inversas de AM-AM y AM-PM de un amplificador de potencia.

Biografía del autor/a

José Alejandro Galaviz Aguilar , Centro de Investigación y Desarrollo de Tecnología Digital, Instituto Politécnico Nacional. Av. Instituto Politécnico Nacional 1310, Mesa de Otay, CP 22150, Tijuana, BC, México.

Was born in Delicias Chihuahua, Mexico, in March 27, 1985. He received his Engineering degree from the Northern University Studies Center in Delicias, Chihuahua, Mexico, in 2010, and the MSc degree in Digital Systems from the Digital Technology Research and Development Center of National Polytechnic Institute (CITEDI-IPN) in Tijuana, Mexico, in 2013. He is currently working to reach his Ph.D. degree in CITEDI-IPN. His research interests include design and modeling of digital algorithms for the linearization of devices, mainly power amplifiers, and the design of components for digital communications systems and system-level design using FPGA devices.

José Ricardo Cárdenas-Valdez, Centro de Investigación y Desarrollo de Tecnología Digital, Instituto Politécnico Nacional. Av. Instituto Politécnico Nacional 1310, Mesa de Otay, CP 22150, Tijuana, BC, México.

Was born in Tijuana, Baja California, Mexico, in October 1, 1982. He received his Engineering degree from the Tijuana Technological Institute (ITT) in Baja California, Mexico, in 2006, and his MSc degree in Digital Systems from the Digital Technology Research and Development Center of National Polytechnic Institute (CITEDI-IPN), in Tijuana, Mexico, in 2008. He is currently working to reach his Ph.D. degree in CITEDI-IPN. His research interests include design and modeling of digital and analog devices, mainly power amplifiers, high frequency devices and FPGA design.

J. Apolinar Reynoso-Hernández, Centro de Investigación Científica y de Educación Superior de Ensenada. Carretera Ensenada-Tijuana 3918, Zona Playitas, CP 22860, Ensenada, BC, México.

Received the Electron. Telecommun. Eng. degree from ESIME-IPN, Mexico, the M.Sc. degree in solid state physics from CINVESTAV-IPN, Mexico and the Ph.D. degree in electronics from the Université Paul Sabatier-LAAS du CNRS, Toulouse, France, in 1980, 1985, and 1989, respectively. His doctoral thesis was on low-frequency noise in MESFET and HEMTs. Since 1990, he has been a researcher with the Electronics and Telecommunications Department of CICESE, Ensenada, Baja California, Mexico. His areas of specialized research interest include high-frequency on-wafer measurements, high-frequency device modeling, linear, nonlinear and noise device modeling, and switched power amplifiers. He was the recipient of ARFTG’s best paper poster award in 2001 and 2012.

Christian Gontrand, Université de Lyon. INSA-Lyon, INL, CNRS UMR5270, Villeurbanne, F-69621, France.

Christian Gontrand has MS, PhD and State Doctorat degrees. From 1982 to 1984, he was part of Thomson’s Laboratoire Central de Recherche. From 1988 on, he joined the Laboratoire de Physique de la Matière. From 1988 to 1996, he was in charge of the technical area of the new Centre de Microélectronique de la Région Lyonnaise and worked on new RF devices, with CNET. From 1997 to 2001, as a professor, he was the head of the team Smart System Integration, at the Centre de Génie Electrique. From 2002 on, he has lead the team RF Systems of the Lyon Institute of Nanotechnology, 3D circuits.

José Cruz Núñez Pérez , Centro de Investigación y Desarrollo de Tecnología Digital, Instituto Politécnico Nacional. Av. Instituto Politécnico Nacional 1310, Mesa de Otay, CP 22150, Tijuana, BC, México.

Received his MSc degree in electronics engineering from the National Center of Research and Technological Development (CENIDET), in Cuernavaca, Mexico, in 2003, and his PhD degree from the Institut National des Sciences Appliquées de Lyon (INSA-Lyon), Villeurbanne France, in 2007. In first semester 2008, he was a Research Director at Advanced Technology Research SA de CV (ATR) in Guadalajara, Mexico, where he led a team of researchers working on networking and telecommunication architectures. Since August 2008, he has been a professor at the Digital Technology Research and Development Center of National Polytechnic Institute (CITEDI-IPN), in Tijuana, Mexico. He is the Research Coordinator in the Telecommunications Department at CITEDI. His research interests include digital and analog circuits design, device physic modeling, DSP and FPGA design

Citas

Nguyen TM, et al. Modeling of HPA and HPA linearization through a predistorter: Global Broadcasting Service applications. IEEE Transactions on Broadcasting. 2003, 49, 132-141. https://doi.org/10.1109/TBC.2003.813650

Presti D, Kimball F, Asbeck F. Closed-Loop Digital Predistortion System With Fast Real-Time Adaptation Applied to a Handset WCDMA PA Module. IEEE Transactions On Microwave Theory And Techniques. 2012, 60(3). https://doi.org/10.1109/TMTT.2011.2181860

Shi M, Chen M, Zhang L, Zhou J. A New Baseband Digital Predistortion System. Microwave Conference Proceedings, 2005. APMC 2005. Asia-Pacific Conference Proceedings. 2005, 2, 4-7. https://doi.org/10.1109/APMC.2005.1606477

Cordesses L. Direct digital synthesis: a tool for periodic wave generation (part 1). IEEE Signal Processing Magazine. 2004, 21(4), 50-54. https://doi.org/10.1109/MSP.2004.1311140

Lamoureux L, Wilton S. FPGA Clock Network Architecture: Flexibility vs. Area and Power. Technical Report, University of British Columbia, 2006. https://doi.org/10.1145/1117201.1117216

Myoung SK, et al. Volterra Characterization and Predistortion Linearization of Multi-Carrier Power Amplifiers. Orland Florida, 64th ARFTG Conference. 2004, 65-73. https://doi.org/10.1109/ARFTGF.2004.1427572

Tubbax J, et al. Compensation of IQ Imbalance and Phase Noise in OFDM Systems. IEEE Transactions on Wireless Communications. 2005, 4, 872-877. https://doi.org/10.1109/TWC.2004.843057

Lin J, Tsi E. Joint adaptive transmitter/receiver IQ imbalance correction for OFDM systems. IEEE International Symposium on PIMRC. 2004, 2, 1511-1516. https://doi.org/10.1109/PIMRC.2004.1373950

Schuchert A, Hasholzner R, Antoine P. A novel IQ imbalance compensation scheme for the reception of OFDM signals. IEEE Transactions on Consumer Electronics. 2001, 47, 313-318. https://doi.org/10.1109/30.964115

Roblin P, Myoung S, Chaillot D, Kim Y, Fathimulla A, Strahler J, Bibyk S. Frequency-Selective Predistortion Linearization of RF Power Amplifiers. IEEE Transactions on Microwave Theory and Techniques. 2008, 56(1), 65-76. https://doi.org/10.1109/TMTT.2007.912241

Descargas

Publicado

22-12-2022

Cómo citar

Galaviz Aguilar , . J. A., Cárdenas-Valdez, J. R., Reynoso-Hernández, J. A., Gontrand, . C., & Núñez Pérez , J. C. . (2022). Metodología de diseño basada en FPGA para la predistorsión digital de amplificadores de potencia. Programación matemática Y Software, 5(2), 29–36. https://doi.org/10.30973/progmat/2013.5.2/5

Número

Sección

Artículos

Artículos más leídos del mismo autor/a