Comparación de métodos perfilométricos por Transformada de Fourier 1D y 2D
DOI:
https://doi.org/10.30973/progmat/2018.10.2/3Palabras clave:
Digitalización 3D, Transformada de Fourier, FTP1D, FTP2DResumen
En el presente trabajo se muestra la comparación realizada del método de Perfilometría por Transformada de Fourier. Utilizando en primer lugar laTrasformada de Fourier Unidimensional y posteriormente la Transformada de Fourier Bidimensional, ambas propuestas son utilizadas para la digitalización de objetos, teniendo variaciones principalmente en la etapa del filtrado de la frecuencia espacial, así como la forma de aplicar dicho filtro a la escena capturada. Se presentan los resultados de tres objetos analizados, el primero es un objeto virtual, con el cual se compara el funcionamiento de ambos métodos, posteriormente se realiza la comparación de dos objetos reales; en todos los resultados se utiliza el desdoblamiento de fase sencillo para su representación 3D, y a partir de los mismos se concluye que el método con la Transformada de Fourier Bidimensional obtiene mejores resultados ya que al realizar un análisis cualitativo estos presentan menores discontinuidades.
Citas
X. Zexiao, W. Jianguo and Z. Qiumei. “Complete 3D measurement in reverse engineering using a multi-probe system”. International Journal of Machine Tools & Manufacture. Vol. 45, pp. 1474-1486. 2005. https://doi.org/10.1016/j.ijmachtools.2005.01.028
Andreas Kolb, Erhardt Barth, Reinhard Koch, Rasmus Larsen, 2009. Time-of-Flight Sensors in Computer Graphics. The Eurographics Association.(2009)
Denis Klimentjew, Norman Hendrich, Jianwei Zhang. 2010. Multi Sensor Fusion of Camera and 3D Laser Range Finder for Object Recognition. IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems University of Utah, Salt Lake City, UT, USA.(2010). https://doi.org/10.1109/MFI.2010.5604459
Takeda M, Hideki I, and Seiji K, Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry, J. Opt. Soc. Am. 72, 156-160 (1982). https://doi.org/10.1364/JOSA.72.000156
Takeda M.; Mutoh K. Fourier transform profilometry for the automatic measurement of 3-D object shapes, Appl. Opt, 22, pp. 3977-3982 (1983). https://doi.org/10.1364/AO.22.003977
Pedraza J. C.; et al, Image Processing for 3D Reconstruction Using a Modified Fourier Transform Profilometry Method”. Springer Berlin / Heidelberg, MICAI: Advances in Artificial Intelligence, 705-712 ISBN 3-540-76630-8 978-3-540-76630-8 (2007). https://doi.org/10.1007/978-3-540-76631-5_67
Tavares Paulo J., Mario A. V, Orthogonal projection technique for resolution enhancement of the Fourier transform fringe analysis method, Optics Communications 266 pp. 465–468 (2006). https://doi.org/10.1016/j.optcom.2006.05.020
Jiang Y, Shanglian H, Modified fourier transform profilometry for the measurement of 3-D steep shapes, 0pfic.s und Laser.s in Engineerrng 27 pp.493-505 (1997). https://doi.org/10.1016/S0143-8166(96)00042-5
Feng S, Qian C, Chao Z, Jiasong Sun, Tianyang T, et al. A carrier removal technique for Fourier transform profilometry based on principal component analysis, Optics and Lasers in Engineering 74 pp 80–86 (2015). https://doi.org/10.1016/j.optlaseng.2015.05.009
Feng L, Wenjing C, Xianyu S. Eliminating zero spectra in Fourier transform profilometry by application of Hilbert transform, Optics Communications 365, pp. 76–85 (2016). https://doi.org/10.1016/j.optcom.2015.11.073
Miguel A, Munther G, Francis L, David R. A spatial algorithm to reduce phase wraps from two dimensional signals in fringe projection profilometry. Optics and Lasers in Engineering 82 pp 70–78 (2016). https://doi.org/10.1016/j.optlaseng.2015.11.009
Guangliang D, Chaorui Z, Canlin Z, Shuchun S, Hui L, Yanjie L., Iterative two-step temporal phase-unwrapping applied to high sensitivity three-dimensional profilometry, Optics and Lasers in Engineering 79, pp.22–28 (2016). https://doi.org/10.1016/j.optlaseng.2015.11.006
Hai L, Xin-yu C, Fei W, Xiao-Tang H, Xiao-Dong H, A novel algorithm based on histogram processing of reliability for two-dimensional phase unwrapping. Optik 126, pp 1640–1644 (2015). https://doi.org/10.1016/j.ijleo.2015.04.070
Hussein Abdul-Rahman. Three-Dimensional Fourier Fringe Analysis and Phase Unwrapping. Tesis Doctoral General Engineering Research Institute (GERI), Liverpool John Moores University (2007).
Hussein S. Abdul-Rahman, Munther A. Gdeisat, David R. Burton, Michael J. Lalor, Francis Lilley, Abdulbasit Abid. Three-dimensional Fourier Fringe Analysis. Optics and Lasers in Engineering 46, pp. 446-455, ISSN: 0143-8166 (2008). https://doi.org/10.1016/j.optlaseng.2008.01.004
Bioucas-Dias, J.M. and Valdaño. G Phase unwrapping via graphcuts. Image Processing, IEEE Transaction on, Vol16 (3), 698-709. (2007) https://doi.org/10.1109/TIP.2006.888351
Mariano R, Francisco J. H, Adonai G, Phase unwrapping by accumulation of residual maps, Optics and Lasers in Engineering 64 pp. 51–58 (2015). https://doi.org/10.1016/j.optlaseng.2014.07.005
Abdulbasit-Zaid Ahmed Abid, Fringe Pattern Analysis using Wavelet Transform, (PhD Thesis) John Mooress University at Liverpool, England. (2008).
Moya. M. Juan C., Et all, A strategy for 3d object digitalization using pre-filtering and post-filtering stages, The 2012 Electronic Engineering and Computer Science Latin American Conference, (2012). https://doi.org/10.1016/j.protcy.2012.03.030
Quan C.; Chen W.;Tay C.J. Phase-retrieval techniques in fringe-projection profilometry, Optics and Lasers in Engineering 48 pp. 235–243, (2010). https://doi.org/10.1016/j.optlaseng.2009.06.013
Pedraza J. C. et al,. Three Dimensional Reconstruction Strategies Using a Profilometrical Approach based on Fourier Transform, Fourier Transforms. - Approach to Scientific Principles, Prof. Goran Nikolic (Ed.), (2011).
Yuan G, Xiaotian C, Tao Z., Robust phase unwrapping algorithm based on least squares, Optics and Lasers in Engineering 63, 25–29 (2014). https://doi.org/10.1016/j.optlaseng.2014.06.007
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2018 Programación Matemática y Software

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Usted es libre de:
![]() |
Compartir — compartir y redistribuir el material publicado en cualquier medio o formato. |
![]() |
Adaptar — combinar, transformar y construir sobre el material para cualquier propósito, incluso comercialmente. |
Bajo las siguientes condiciones:
![]() |
Atribución — Debe otorgar el crédito correspondiente, proporcionar un enlace a la licencia e indicar si se realizaron cambios. Puede hacerlo de cualquier manera razonable, pero de ninguna manera que sugiera que el licenciador lo respalda a usted o a su uso. |
Sin restricciones adicionales: no puede aplicar términos legales o medidas tecnológicas que restrinjan legalmente a otros a hacer cualquier cosa que permita la licencia. |