Desarrollo de un entorno virtual para operar de forma segura el proceso de desorción utilizando el método HAZOP
DOI:
https://doi.org/10.30973/progmat/2024.16.1/1Palabras clave:
Realidad virtual, Seguridad Industrial, Proceso de desorción, Método HAZOPResumen
En este trabajo se describe la metodología del desarrollo de un entorno virtual para el monitoreo de la seguridad industrial de un proceso de desorción a escala laboratorio. La metodología HAZOP fue utilizada para la identificación de los riesgos en el proceso de desorción, analizando de manera particular la alimentación del vapor. Los programas de cómputo Blender y Unity fueron utilizados para el desarrollo del entorno virtual y Python y C# para la programación de scripts. Con la interfaz gráfica desarrollada, el usuario pudo establecer las condiciones de operación del proceso de desorción para predecir las situaciones de riesgo y tomar decisiones previo a la operación física del equipo.
Citas
Liagkou, V., Salmas, D., Stylios, Ch. Realizing virtual reality learning environment for industry 4.0. Procedia Cirp. 2019, 79, 712-717, https://doi.org/10.1016/j.procir.2019.02.025.
Flores-Bungacho, F., Guerrero, J., Llanos, J., Ortiz-Villalba, D., Navas, A., Velasco, P. Development and application of a virtual reality biphasic separator as a learning system for industrial process control. Electronics. 2022, 11(4), 636, https://doi.org/10.3390/electronics11040636.
Gallala, A., Kumar, A. A., Hichri, B., Plapper, P. Digital Twin for human–robot interactions by means of Industry 4.0 Enabling Technologies. Sensors. 2022, 22(13) 4950, https://doi.org/10.3390/s22134950.
Židek, K., Piteľ, J., Adámek, M., Lazorík, P., Hošovský, A. Digital twin of experimental smart manufacturing assembly system for industry 4.0 concept. Sustainability. 2020, 12(9), 3658, https://doi.org/10.3390/su12093658.
Togias, T., Gkournelos, C., Angelakis, P., Michalos, G., Makris, S. Virtual reality environment for industrial robot control and path design. Procedia CIRP. 2021, 100, 133-138, https://doi.org/10.1016/j.procir.2021.05.021.
Kumar, V. V., Carberry, D., Beenfeldt, C., Andersson, M. P., Mansouri, S. S., Gallucci, F. Virtual reality in chemical and biochemical engineering education and training. Education for Chemical Engineers. 2021, 36, 143-153, https://doi.org/10.1016/j.ece.2021.05.002.
Soliman, M., Pesyridis, A., Dalaymani-Zad, D., Gronfula, M., Kourmpetis, M. The application of virtual reality in engineering education. Applied Sciences, 2021, 11(6) 2879, https://doi.org/10.3390/app11062879.
Udeozor, C., Toyoda, R., Russo Abegão, F., Glassey, J. Perceptions of the use of virtual reality games for chemical engineering education and professional training. Higher Education Pedagogies. 2021, 6(1), 175-194, https://doi.org/10.1080/23752696.2021.1951615.
Díaz, M. J., Mantell, C., Caro, I., de Ory, I., Sánchez, J., Portela, J. R. Creation of immersive resources based on virtual reality for dissemination and teaching in chemical engineering. Education Sciences, 2022, 12(8) 572, https://doi.org/10.3390/educsci12080572.
Su, Ch.-H., Cheng, T.-W. A sustainability innovation experiential learning model for virtual reality chemistry laboratory: An empirical study with PLS-SEM and IPMA. Sustainability, 2019, 11(4), 1027, https://doi.org/10.3390/su11041027.
Gunawan, P., Kwan, J., Cai, Y., Yang, R. Augmented Reality Application for Chemical Engineering Unit Operations. Virtual and Augmented Reality, Simulation and Serious Games for Education. 2021, 29-43, https://doi.org/10.1007/978-981-16-1361-6_4.
Awtry, A., Fine, N., Tomey, J., Dinsdale, B., Atcheson, J., Brown, A. E., Meuleman, E. Design and Costing of an ION Clean Energy CO2 Capture Plant Retrofitted to an 857 MW Natural Gas Combined Cycle Power Station. Proc. of the 16th Greenhouse Gas Control Technologies Conf. (GHGT-16). 2022, https://doi.org/10.2139/ssrn.4288012.
Montano, A., Torres, Y., Herrera, E., Rincon, J., Velasquez, P., Santis, A. Analysis of the Operational Risk of the Process Pasteurization and Mixing in a Dairy Processing Plant, Using the Hazop Methodology. Chemical Engineering Transactions. 2020, 82, 97-102, https://doi.org/10.3303/CET2082017.
Ramadhan, M. Y. A., Harahap, A. F. P., Hermansyah, H., Sahlan, M., Srinophakun, P., Gozan, M. Plant layout and health and safety analysis of thermochemical conversion for rice straw-based second-generation bioethanol production in West Java. In IOP Conference Series: Earth and Environmental Science. 2020, 599(1), https://doi.org/10.1088/1755-1315/599/1/012005.
Ishtiaque, S., Sikandar, S., Akhter, M. F., Altaf, M., Siddique, M. Hazard and Operability Analysis (HAZOP) of a Plastic Manufacturing Plant at Karachi, Pakistan. Journal of Applied and Emerging Sciences. 2019, 9(1), https://doi.org/10.36785/jaes.91264.
PK, Ganesh Prasanna, Anugeetha Shine. Hazop study for thermic fluid heater. International Research Journal of Modernization in Engineering Technology and Science. 2023, 5(3), 3134-3142.
Jacob, S. A., Soloman P.A. Dynamic Simulation of Demethanizer Column Using Custom Column and its Dynamic Hazop Study in Unisim Design. Proc. of the Int. Conf. on Systems, Energy and Environment 2022 (ICSEE 2022). 2022, https://doi.org/10.2139/ssrn.4295548.
Ko, C., Lee, H., Kim, K., Lee, W. B. Quantitative risk assessment integrated with dynamic process simulation for reactor section in heavy oil desulfurization process. Journal of Loss Prevention in the Process Industries. 2020, 66, 104158, https://doi.org/10.1016/j.jlp.2020.104158.
Gonzales, C., Inche, J., Modelo de análisis y evaluación de riesgos de accidentes en el trabajo para una empresa textil, Gestión y producción, 2014, 7, 1, 33–41, https://doi.org/10.15381/idata.v7i1.6103.
Harriott, P., McCabe, W. L., Smith, J. C. Operaciones unitarias en ingenieria química. 2007.
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Marco Luis Rodríguez Camacho, Miriam Navarrete Procopio, Víctor Zezatti Flores, Alberto Ochoa Ortíz
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Usted es libre de:
Compartir — compartir y redistribuir el material publicado en cualquier medio o formato. |
Adaptar — combinar, transformar y construir sobre el material para cualquier propósito, incluso comercialmente. |
Bajo las siguientes condiciones:
Atribución — Debe otorgar el crédito correspondiente, proporcionar un enlace a la licencia e indicar si se realizaron cambios. Puede hacerlo de cualquier manera razonable, pero de ninguna manera que sugiera que el licenciador lo respalda a usted o a su uso. |
Sin restricciones adicionales: no puede aplicar términos legales o medidas tecnológicas que restrinjan legalmente a otros a hacer cualquier cosa que permita la licencia. |