Red neuronal artificial para predecir la dependencia a la composición química de la energía de falla de apilamiento en aceros inoxidables austeníticos
DOI:
https://doi.org/10.30973/progmat/2020.12.2/7Palabras clave:
Red Neuronal Artificial, Energía de falla de apilamiento, Acero inoxidable austeniticoResumen
La energía de falla de apilamiento (SFE) es un parámetro importante a considerar en el diseño de aceros inoxidables austeníticos (SS) debido a su influencia en la susceptibilidad magnética, los cambios de orden atómico y la resistencia a la corrosión intergranular. Se examinó una extensa revisión de la literatura especializada con el fin de comprender los diferentes métodos que se han desarrollado para el cálculo de SFE. La caracterización por microscopía electrónica de transmisión (TEM), expresiones lineales a partir del procesamiento de datos y aproximaciones de mecánica cuántica de primeros principios son algunas de las técnicas que se han utilizado para el cálculo de SFE. En el presente trabajo se desarrolló una red neuronal artificial (ANN) de retropropagación para predecir la SFE dentro de rangos específicos dados de composiciones químicas para SS austenítico. Los datos experimentales se extrajeron de un trabajo de investigación informado por Yonezawa et al [1], y luego se analizaron para tres condiciones diferentes de tratamiento térmico. El presente modelo predice valores SFE con un coeficiente de correlación de 0.99, lo cual es un error menor cuando se compara con otros trabajos en la literatura.
Citas
Toshio, Y., Ken, S., Suguru, O., Atsushi H. The Effect of Chemical Composition and Heat Treatment Conditions on Stacking Fault Energy for Fe-Cr-Ni Austenitic Stainless Steel. Metallurgical and Materials Transactions A 44 (2013) 5884. https://doi.org/10.1007/s11661-013-1943-0
Mumtaz, K., Takahashi, S., Echigoya, J., Kamada, Y., Zhang, L. F., Kikuchi, H., Ara, K., Sato. Magnetic measurements of martensitic transformation in austenitic stainless steel after room temperature rolling. Journal of Material Science 39 (2004) 85– 97. https://doi.org/10.1023/B:JMSC.0000007731.38154.e1
Hamilton, F. G. A., Sheyla, S. C., Pedro, L. N., Ricardo, P. S., Válder, N. F., Paulo, M. O. S., Sérgio, S. M. T. Deformation induced martensite in an AISI 301LN stainless steel: characterization and influence on pitting corrosion resistance Materials Research Vol. 10, No. 4, 359-366, 2007. https://doi.org/10.1590/S1516-14392007000400007
Amar, K., David C., M., Martin, C. M., John, G. S., David, K. M. Quantitative measurement of deformation-induced martensite in 304 stainless steel by Xray diffraction. Scripta Materialia 50 (2004) 1445–1449. https://doi.org/10.1016/j.scriptamat.2004.03.011
Peguet, L., Malki, B., Baroux, B. Influence of cold working on the pitting corrosion resistance of stainless steels. Corrosion Science 49 (2007) 1933. https://doi.org/10.1016/j.corsci.2006.08.021
Byun, T.S. On the stress dependence of partial dislocation separation and deformation microstructure in austenitic stainless steels. Acta Materialia Volume 51, Issue 11, 27 June 2003, Pages 3063-3071. https://doi.org/10.1016/S1359-6454(03)00117-4
Byun,T. S., Hashimoto, N., Farrell, K. Temperature dependence of strain hardening and plastic instability behaviors in austenitic stainless steels. Acta Materialia Volume 52, Issue 13, 2 August 2004, Pages 3889-3899. https://doi.org/10.1016/j.actamat.2004.05.003
Ernst, F., Cao, Y., Michal, G. M. Heuer, A.H. Carbide precipitation in austenitic stainless steel carburized at low temperature. Acta Materialia Volume 55, Issue 6, April 2007, Pages 1895-1906. https://doi.org/10.1016/j.actamat.2006.09.049
Tae-Ho, L., Eunjoo, S., Chang-Seok O., Heon-Young, H., Sung-Joon K. Correlation between stacking fault energy and deformation microstructure in high-interstitial-alloyed austenitic steels. Acta Materialia Volume 58, Issue 8, May 2010, Pages 3173-3186. https://doi.org/10.1016/j.actamat.2010.01.056
Shu-XinLi, Yan-NiHe, Shu-RongYu, Peng-YiZhang. Evaluation of the effect of grain size on chromium carbide precipitation and intergranular corrosion of 316L stainless steel. Corrosion Science Volume 66, January 2013, Pages 211-216. https://doi.org/10.1016/j.corsci.2012.09.022
Swann, P.R. Dislocation Substructure vs Transgranular Stress Corrosion Susceptibility Of Single Phase Alloys. Corrosion 1963, vol. 19, p. 102. https://doi.org/10.5006/0010-9312-19.3.102
Rhodes, C.G., Thompson, A.W., The composition dependence of stacking fault energy in austenitic stainless steels. Metallurgical and Materials Transactions A 8 (1977) 1901. https://doi.org/10.1007/BF02646563
Yakubtsov, I. A., Ariapour, A., Perovic, D. D. Effect of nitrogen on stacking fault energy of f.c.c. iron-based alloys. Acta Materialia Vol. 47, No. 4, pp. 1271-1279, 1999. https://doi.org/10.1016/S1359-6454(98)00419-4
Ojima, M., Adachi, Y., Tomota, Y., Katada, Y., Kaneko, Y., Kuroda, K., Saka, H. Weak Beam TEM Study on Stacking Fault Energy of High Nitrogen Steels. Steel Research International 80 (2009) 477. https://doi.org/10.2374/SRI09SP038
Pierce, D., Bentley, J.,Jimenez, J., Wittig, J. Stacking fault energy measurements of Fe–Mn–Al–Si austenitic twinning-induced plasticity steels. Scripta Materialia 66 (2012) 753. https://doi.org/10.1016/j.scriptamat.2012.01.050
Lee, T.H., Ha, H.Y., Hwang, B., Kim, S.J., Shin, E. Effect of Carbon Fraction on Stacking Fault Energy of Austenitic Stainless Steels. Metallurgical and Materials Transactions A, 2012, vol. 43A, p. 4455. https://doi.org/10.1007/s11661-012-1423-y
Lu, J., Lars H., Erik H., Karin H. A., Mikael, G., Wei L., Levente, V., Ardeshir, G. tacking fault energies in austenitic stainless steels. Acta Materialia 111, 1 June 2016, 39. https://doi.org/10.1016/j.actamat.2016.03.042
Smallman, R.E., Westmacott, K.H. Stacking faults in face-centred cubic metals and alloys. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics 1957, vol. 2, p. 669. https://doi.org/10.1080/14786435708242709
Reed, R.P., Schramm, R.E. Relationship between stacking‐fault energy and x‐ray measurements of stacking‐fault probability and microstrain. Journal of Applied Phyics. 45 (1974) 4705. https://doi.org/10.1063/1.1663122
Huang, S.K., Wen, Y.H., Li, N., Teng, J., Ding, S., Xu, Y. G. Application of damping mechanism model and stacking fault probability in Fe–Mn alloy. Materials Characterization 59, Issue 6, June 2008, 681. https://doi.org/10.1016/j.matchar.2007.05.023
Moallemi, M., Hanzaki, A.Z., Mirzaei, A. On the Stacking Fault Energy Evaluation and Deformation Mechanism of Sanicro28 Super-Austenitic Stainless Steel. Journal of Materials Engineering and Performance 2015, vol. 24, p. 2335. https://doi.org/10.1007/s11665-015-1501-6
Kang, M., Woo, W., Lee, Y.-K., Seong, B.-S. Neutron diffraction analysis of stacking fault energy in Fe–18Mn–2Al– 0.6C twinning-induced plasticity steels. Materials Letters 76 (2012) 93. https://doi.org/10.1016/j.matlet.2012.02.075
Schramm, R.E., Reed, R.P. Stacking fault energies of seven commercial austenitic stainless steels. Metallurgical and Materials Transactions A 6 (1975) 1345. https://doi.org/10.1007/BF02641927
Qi,X., An-Dong, W., Xiao-Nong, C., XinMin, L., Stacking fault energy of cryogenic austenitic steels. Chinese Physics 11 (2002) 596.
Meric de Bellefon, G., Domain, C., van Duysen, J. C., Sridharan, K. Conference Paper · April 2016. https://doi.org/10.1088/1009-1963/11/6/315
Meric de Bellefon, G., van Duysen, J.C., Sridharan, K. Composition-dependence of stacking fault energy in austenitic stainless steels through linear regression with random intercepts. Journal of Nuclear Materials 492 (2017) 227. https://doi.org/10.1016/j.jnucmat.2017.05.037
Olson, G.B., Cohen, M. A general mechanism of martensitic nucleation: Part I. General concepts and the FCC → HCP transformation. Metallurgical and Materials Transactions A 1976, vol. 7,p. 1897. https://doi.org/10.1007/BF02659822
Vitos, L., Nilsson, J., Johansson. B. Alloying effects on the stacking fault energy in austenitic stainless steels from first-principles theory. Acta Materialia 54 (2006), 3821. https://doi.org/10.1016/j.actamat.2006.04.013
Lu, S., Hu, Q.M., Johansson, B., Vitos, L. Stacking fault energies of Mn, Co and Nb alloyed austenitic stainless steels. Acta Materialia 59 (2011) 5728. https://doi.org/10.1016/j.actamat.2011.05.049
Geissler, D., Freudenberger, J., Kauffmann, A., Martin, S., Rafaja, D. Assessment of the thermodynamic dimension of the stacking fault energy. Philosophical Magazine 2014, vol. 94, p. 2967. https://doi.org/10.1080/14786435.2014.944606
Pierce, D., Jimenez, J., Bentley, J., Raabe, D., Oskay, C., Wittig, J. The influence of manganese content on the stacking fault and austenite/ε-martensite interfacial energies in Fe–Mn–(Al–Si) steels investigated by experiment and theory. Acta Materialia 68 (2014) 238. https://doi.org/10.1016/j.actamat.2014.01.001
Das, A. Revisiting Stacking Fault Energy of Steels. Metallurgical and Materials Transactions A 47 (2015) 748. https://doi.org/10.1007/s11661-015-3266-9
Chiappetta, P., Colangelo, P., De Felice, P., Nardulli, G., Pasquariellod, G. Higgs search by neural networks at LHC. Physics Letters B, Volume 322, Issue 3, 17 February 1994, 219-223. https://doi.org/10.1016/0370-2693(94)91110-X
Amr, R., Samy, K. H. IntechOpen Applying Artificial Neural Networks, https://doi.org/10.5772/51273, 2013.
Saeed, S., Rouein, H., Shokoufe, T., Alimorad, R. Neural network and genetic algorithm for modeling and optimization of effective parameters on synthesized ZSM-5 particle size. Materials Letters 136 (2014) 138. https://doi.org/10.1016/j.matlet.2014.08.039
Yetim, A.F., Codur, M.Y., Yazici, M. Using of artificial neural network for the prediction of tribological properties of plasma nitrided 316L stainless steel. Materials Letters 158 (2015) 170. https://doi.org/10.1016/j.matlet.2015.06.015
Baldi, P., Sadowski, P., Whiteson, D. Searching for exotic particles in highenergy physics with deep learning. Nature communications. https://doi.org/10.1038/ncomms5308.
Jiménez-Come, M. J., Turias, I. J., Ruiz-Aguilar, J. J., Trujillo, F. Characterization of pitting corrosion of stainless steel using artificial neural networks. Journal of Materials and Corrosion 2015, 66, No. 10 1084. https://doi.org/10.1002/maco.201408173
Marquardt, D. W. An Algorithm for leastsquares estimation of nonlinear parameters Journal of the Society for Industrial and Applied Mathematics. 1963, Vol. 11, No. 2, 431. https://doi.org/10.1137/0111030
Hagan, M.T., Menhaj, M.B. Training feedforward networks with the Marquardt algorithm. IEEE Transactions of Neural Networks Volume: 5, Issue: 6, Nov 1994, 989. https://doi.org/10.1109/72.329697
Martin T. H., Howard, B. D., Mark, H. B., Orlando, J. Neural network design., Chapters 10,12., ISBN 0971732116, 9780971732117.
Ponce, P. Inteligencia artificial con aplicaciones a la ingeniería., Alfaomega Grupo Editor, S.A. de C.V., México., ISBN: 978-607-7854-83-8.
Petrov, N.Y., Yakubtsov, I.A. Thermodynamic Calculation of Stacking Fault Energy and its Effect on Fcc→Hcp Phase Transformation in Nitrogen Alloyed Stainless Steels. Materials Science Forum 1990, vol. 8, p. 889. https://doi.org/10.4028/www.scientific.net/MSF.318-320.121
Simmons, J.W. Overview: high-nitrogen alloying of stainless steels. Materials Science and Engineering A 1996, vol. 207, p. 159. https://doi.org/10.1016/0921-5093(95)09991-3
Prokoshkina, V., Kaputkina, L. Materials Science Engineering A, 2008, vols. 481– 482, p. 762.
Bracke, L., Penning, J., Akdut, N. The Influence of Cr and N Additions on the Mechanical Properties of FeMnC Steels. Metallurgical and Materials Transactions A, 2007, vol. 38A, p. 520. https://doi.org/10.1007/s11661-006-9084-3
Yang, J.H., Wayman, M. Selfaccomodation and shape memory mechanism of ϵ-martensite—I. Experimental observations. Material Characterization, 1992, vol. 28 (1), p. 23. https://doi.org/10.1016/1044-5803(92)90026-E
https://www.tensorflow.org/ last accessed 04/25/2018
https://onnx.ai/ last accessed 04/25/2018
https://www.acumos.org/ last accessed 04/25/2018
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 Alfonso M. Román, Bernando Campillo, Arturo Molina, Horacio Martínez, Itzel Reyes, Osvaldo Flores

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Usted es libre de:
![]() |
Compartir — compartir y redistribuir el material publicado en cualquier medio o formato. |
![]() |
Adaptar — combinar, transformar y construir sobre el material para cualquier propósito, incluso comercialmente. |
Bajo las siguientes condiciones:
![]() |
Atribución — Debe otorgar el crédito correspondiente, proporcionar un enlace a la licencia e indicar si se realizaron cambios. Puede hacerlo de cualquier manera razonable, pero de ninguna manera que sugiera que el licenciador lo respalda a usted o a su uso. |
Sin restricciones adicionales: no puede aplicar términos legales o medidas tecnológicas que restrinjan legalmente a otros a hacer cualquier cosa que permita la licencia. |