Eficiencia del Método de Optimización del Diseño de Fidelidad Variable con Modelos de Complejidad Variable

Autores/as

  • Gilberto Mejía Rodríguez Centro de Investigación y Estudios de Posgrado, Facultad de Ingeniería Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78290, México

DOI:

https://doi.org/10.30973/progmat/2015.7.1/7

Palabras clave:

Métodos de escalamiento, Diferente grado de no-linealidad, Diferente número de variables de diseño, Fidelidad variable

Resumen

El objetivo de esta investigación es mejorar la comprensión del algoritmo de fidelidad variable y de diversos métodos de escalamiento a través de tres problemas. Los primeros dos problemas son analíticos, y el tercero es un problema de optimización structural. Los problemas han sido construidos especificamente para comprender el funcionamiento del algoritmo con modelos (alta y baja fidelidad) de diferente grado de no-linealidad y diferente número de variables de diseño. El rendimiento del algorimo al usar diversos métodos de escalamiento de primero y segundo orden (aditivo y multiplicativo), es comparado con el rendimiento de usar programación cuadrática secuencial solamente sobre el modelo de alta fidelidad. La principal contribución de esta investigación es la comprensión ganada con los problemas propuestos, lo cual puede extenderse a otros problemas, sobre el alcance y limitandes del algoritmo, y la elección del método de escalamiento más apropiado dependiendo del caso de studio que se tenga. Además, los resultados muestran como una reducción del tiempo de diseño puede obtenerse, mientras se reduce el número de evaluaciones al modelo de alta fidelidad y se alcanza convergencia.

Biografía del autor/a

Gilberto Mejía Rodríguez, Centro de Investigación y Estudios de Posgrado, Facultad de Ingeniería Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78290, México

Gilberto Mejía Rodríguez was born in San Luis Potosí, México, on October 11, 1981. He received his M.S., and Ph.D. degrees in 2007 and 2010 respectively, from the University of Notre Dame, Indiana, United States of America. He is member of the National System of Researchers from CONACYT - México. His research interests include design optimization and automation, structural optimization, materials design optimization and computational mechanics. In addition to research activities, he teaches in undergraduate and graduate programs, and serves as thesis advisor in these programs, and also offers technical consulting to companies in the region.

Citas

Alexandrov, N. M., Dennis, J. E., Lewis, R. M., and Torczon, V. A Trust-Region Framework for Managing the Use of Approximation Models in Optimization. Structural Optimization. 1998, 15(1), 16-23. https://doi.org/10.1007/BF01197433

Rodriguez, J. F., Renaud, J. E., and Watson, L. T. Convergence of Trust Region Augmented Lagrangian Methods Using Variable Fidelity Approximation Data. Structural Optimization. 1998, 15(3-4), 141-156. https://doi.org/10.1007/BF01203525

Rodriguez, J. F., Renaud, J. E., and Watson, L. T. Trust Region Augmented Lagrangian Methods for Sequential Response Surface Approximation and Optimization. ASME Journal of Mechanical Design. 1998, 120(1), 58-66. https://doi.org/10.1115/DETC97/DAC-3773

Wujek, B. A. and Renaud, J. E. A New Adaptive Move-Limit Management Strategy for Approximate Optimization, Part 1. AIAA Journal. 1998, 36(10), 1911-1921. https://doi.org/10.2514/2.285

Wujek, B. A. and Renaud, J. E. A New Adaptive Move-Limit Management Strategy for Approximate Optimization, Part 2. AIAA Journal. 1998, 36(10), 1922-1937. https://doi.org/10.2514/2.287

Perez, V. M., Renaud, J. E., and Watson, L. T. An Interior-Point Sequential Approximate Optimization Methodology. Structural Optimization. 2004, 27(5), 360-370. https://doi.org/10.1007/s00158-004-0395-y

Bakr, M. H., Bandler, J. W., Madsen, K., Rayas-Sánchez, J. E., and Søndergaard, J. Review of the Space Mapping Approach to Engineering Optimization and Modeling. Optimization and Engineering. 2000, 1(3), 241-276. https://doi.org/10.1023/A:1010000106286

Qian, Z., Seepersad, C. C., Joseph, V. R., Allen, J. K., and Wu, C. F. J. Building Surrogate Models Based on Detailed and Approximate Simulations. ASME Journal of Mechanical Design. 2006, 128(4), 668-677. https://doi.org/10.1115/1.2179459

Osio, I. G. and Amon, C. H. An Engineering Design Methodology with Multistage Bayesian Surrogates and Optimal Sampling. Research in Engineering Design. 2005, 8(4), 189-206. https://doi.org/10.1007/BF01597226

Alexandrov, N. M. and Lewis, R. M. An Overview of First-Order Model Management for Engineering Optimization. Optimization and Engineering. 2001, 2, 413-430. https://doi.org/10.1023/A:1016042505922

Thokala, P. and Martins J. R. R. A. Variable-Complexity Optimization Applied to Airfoil Design. Engineering Optimization. 2007, 39(3), 271-286. https://doi.org/10.1080/03052150601107976

Eldred,M.S.,Giunta,A.A., and Collis,S.S.Second-Order Corrections for Surrogate-Based Optimization with Model Hierarchies. In: Proceedings of the 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Albany, New York, 2004. https://doi.org/10.2514/6.2004-4457

Gano, S. E., Renaud, J. E., and Sanders, B. Variable Fidelity Optimization Using a Kriging Based Scaling Function. In: Proceedings of the10th AIAA/ ISSMO Multidisciplinary Analysis and Optimization Conference. Albany, New York, 2004. https://doi.org/10.2514/6.2004-4460

Giunta, A. A. and Eldred, M. S. Implementation of a Trust Region Model Management Strategy in the Dakota Optimization Toolkit. In: Proceedings of 8th AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Long Beach, CA, 2000. https://doi.org/10.2514/6.2000-4935

Alexandrov, N. M. and Lewis, R. M. An Overview of First-Order Model Management for Engineering Optimization. Optimization and Engineering. 2001, 2, 413-430. https://doi.org/10.1023/A:1016042505922

Haftka, R. T. Combining Global and Local Approximations. AIAA Journal. 1991, 29(9), 1523-1525. https://doi.org/10.2514/3.10768

Chang, K. J., Haftka, R. T., Giles, G. L., and Kao, P.-J. Sensitivity-Based Scaling For Approximating Structural Response. Journal of Aircraft. 1993, 30(2), 283-288. https://doi.org/10.2514/3.48278

Eldred, M. S., Giunta, A. A., and Collis, S. S. Second-Order Corrections for Surrogate-Based Optimization with Model Hierarchies. In: Proceedings of the 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Albany, New York, 2004. https://doi.org/10.2514/6.2004-4457

Gano, S. E., Perez, V. M., and Renaud, J. E. Multi-Objective Variable-Fidelity Optimization of a Morphing Unmanned Aerial Vehicle. In: Proceedings of the 45th AIAA/ASME/ASCE/AHS/ ASC Structures, Structural Dynamics & Materials Conference. Palm Springs, CA, 2004. https://doi.org/10.2514/6.2004-1763

Lewis, R. M. and Nash, S. G. A Multigrid Approach to the Optimization of Systems Governed by Differential Equations. In: Proceedings of the 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Long Beach, CA, 2000. https://doi.org/10.2514/6.2000-4890

Barnes, G. K. Master’s thesis. The University of Texas. Austin, Texas, 1967.

Wujek, B. A., Renaud, J. E., Batill, S. M. A Concurrent Engineering Approach for Multidisciplinary Design in a Distributed Computing Environment. In: N. Alexandrov, M. Y. Hussaini, eds., Multidisciplinary Design Optimization: State-of-the-Art. 1997, 80, 189–208.

Wujek, B. A., Renaud, J. E., Batill, S. M., Brockman, J. B. Concurrent Subspace Optimization Using Design Variable Sharing in a Distributed Design Environment. Concurrent Engineering. 1996, 4(4), 361-377. https://doi.org/10.1177/1063293X9600400405

Descargas

Publicado

28-02-2015

Cómo citar

Mejía Rodríguez, G. (2015). Eficiencia del Método de Optimización del Diseño de Fidelidad Variable con Modelos de Complejidad Variable. Programación matemática Y Software, 7(1), 45–57. https://doi.org/10.30973/progmat/2015.7.1/7

Número

Sección

Artículos