
 Programación Matemática y Software (2024) 16(1): 11-21. ISSN: 2007-3283

Simple yet robust triangulation for polygons
containing multiple holes for real-time 3D industrial

applications
Triangulación simple y robusta para polígonos con múltiples

orificios en aplicaciones industriales 3D de tiempo real
Yuriy Kotsarenko

Afterwarp Interactive
yunkot@gmail.com

KEYWORDS:

Polygon
triangulation,
Ear clipping
algorithm,
Polygon with
holes, Real-Time
visualization

ABSTRACT

In industrial applications such as CAD modeling, manufacture or automated systems, it is common to
work with data models that are represented by polygonal shapes, or models that produce polygonal
shapes out of complex geometry defined by lines and curves. However, this data has to be converted to
a triangular mesh before it can be processed and/or rendered by the GPU. Existing solutions that
generate triangular mesh out of polygonal shapes either do not support holes or have limitations on
how many holes can be present at the same time. Most modern advanced solutions need considerable
effort to implement, debug and maintain, which involves significant development costs.
In this work, an alternative solution is proposed, which is relatively simple to implement yet is
sufficiently robust to handle all possible input scenarios handling any number of holes, or inner
polygons in an outer polygon, assuming that polygons do not intersect each other or themselves, and
makes no assumptions about the winding order of polygon vertices. The proposed solution involves
initial pre-processing work, merging inner polygons into an outer polygon, and then performing
polygon triangulation using one of the two proposed variations of an Ear Clipping algorithm. The
proposed solution is shown to handle practically an unlimited number of holes in polygon
independently of its shape. Quality and performance comparison between two techniques is also
provided and discussed, along with the images of a real life CAD application, which implements the
proposed solution.

PALABRAS
CLAVE:

Triangulación de
polígonos,
Algoritmo ear-
clipping,
Polígono con
agujeros,
Visualización en
tiempo real

RESUMEN

En aplicaciones industriales tales como el modelado CAD, la industria de fabricación o los sistemas
automatizados, es común trabajar con modelos de datos que representan contornos poligonales, o con
los modelos que general polígonos a partir de una geometría compleja que se define mediante líneas y
curvas. Sin embargo, para que estos datos pueden ser procesados y/o rendereados por GPU, los datos
se tienen que convertir en una serie de triángulos. Las soluciones existentes que general triángulos a
partir de contornos poligonales no son capaces de trabajar con orificios o se limiten a un cierto número
de orificios que pueden estar presentes al mismo tiempo. La mayoría de las soluciones modernas
avanzadas requieren de un esfuerzo considerable para su implementación, depuración y
mantenimiento, lo que a su vez produce ciertas implicaciones importantes en cuestión de costos de
desarrollo.
En este trabajo, una solución alternativa se propone, siendo relativamente fácil de implementar y al
mismo tiempo suficientemente robusta para manejar cualquier posible entrada de datos, incluyendo
cualquier número de orificios e incluso cualquier número de polígonos internos, siempre y cuando los
polígonos no se cruzan entre sí ni se auto-cruzan a sí mismos. La solución propuesta tampoco depende
de un orden determinado de los vértices del polígono, solo necesita que este orden sea consistente. La
solución propuesta involucra un pre-procesamiento inicial, donde los polígonos internos se integran a
los polígonos externos. Una vez hecho esto, se hace una triangulación de polígonos utilizando una de
las dos variaciones de técnicas propuestas que se basan en algoritmo de “Ear Clipping”. En este trabajo
se muestra que la solución propuesta puede trabajar con el número de orificios prácticamente
ilimitados independientemente de su forma. Este trabajo también incluye una comparativa de
evaluación de calidad y desempeño entre las dos técnicas propuestas, incluyendo unas imágenes de una
aplicación CAD que utiliza estas soluciones de manera práctica.

• Recibido: 7 de agosto de 2023 • Aceptado: 18 de noviembre de 2023 • Publicado en línea: 1 de febrero de 2024

ProgMat, 2024, 16, 1; https://progmat.uaem.mx/progmat Copyright:© 2024 por los autores

DOI: 10.30973/progmat/2024.16.1/2 Creative Commons Atribución 4.0 CC-BY

https://progmat.uaem.mx/progmat
mailto:yunkot@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.30973/progmat/2024.16.1/2
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0001-1446-5728

 Programación Matemática y Software (2024) 16(1): 11-21. ISSN: 2007-3283

1. INTRODUCTION

In industrial applications such as
construction, manufacture or automated
systems, it is common to work with complex
objects, diagrams and/or obstacles, which
are often described in terms polygonal
shapes. In other situations, an object or a
model may be described in terms of
primitives such curves and arcs, which can
then be approximated to a polygon using
certain degree of accuracy by subdividing the
primitive into line segments of finite length.
The resulting polygons may have irregular,
strange looking shapes and may even contain
holes, which would represent irregular
polygon themselves. One such example could
be a real-time Computer Aided Design (CAD)
application that works with vector and/or 3D
graphics has drawings and text represented
as a series of curves forming closed shapes
with holes. Another example would be an
electronic circuit design software, working
with a data model of printed circuit board
plate with holes, interconnections and
electronic components. In order to present
the information visually using Graphics
Processing Unit (GPU), both applications
would need to convert their representations
into triangular meshes.

As a result, it is very common in the industry
to deal with a problem of converting one or
more polygonal shapes into a series of
triangles. This is called triangulation and can
be formally defined as the decomposition of a
polygonal area into a set of triangles [1][2].
Depending on how many polygons need to be
triangulated, their shape, complexity and
whether or not they have holes, the
triangulation process may vary greatly from
being trivial to quite difficult problem with a
large number of possible solutions, some of
which could be satisfactory for a given
particular situation, whereas others would be
unacceptable.

For the purposes of this work, a polygon is
defined by a series of points, where each pair

of consecutive vertices, along with first and
last ones, are connected by edges. As long as
edges do not intersect each other except at
their respective vertices and each vertex
shares exactly two edges, such polygon is
called a simple polygon; otherwise, it is called
a complex polygon.

Figure 1. A simple polygon (a) and two complex polygons:
(b) and (c).

On Figure 1, three different polygons are
shown. The first polygon (a) is simple because
it fulfills aforementioned conditions. The
second polygon (b) is not simple because its
vertex at the center is shared by more than
two edges, and the last polygon (c) is not
simple because there are multiple
intersections between the edges at points
that are not vertices. Also, this last polygon
presents additional challenges because it
requires generation of new vertices where
edges intersect and such newly generated
vertices themselves will also be shared by
more than two edges. In the scope of this
work, only simple polygons will be
considered. In polygon on Figure 1(a), vertices
{0, 1, 4, 5, 7, 9} are considered convex, whereas
vertices {2, 3, 6, 8, 10} are reflex (also known
as concave). A vertex is considered convex,
when its interior angle is smaller than π
radians and the line segment between its
neighboring vertices lies completely inside
the polygon; otherwise, the vertex is
considered reflex. A polygon with n vertices
may have up to n-2 vertices that are reflex
and up to n vertices that are convex. If a
simple polygon has all vertices convex, such
polygon is called convex polygon. A
triangulation of a polygon with n vertices
produces n-2 triangles [3]. A convex polygon

12

 Programación Matemática y Software (2024) 16(1): 11-21. ISSN: 2007-3283

can be trivially triangulated by choosing a
vertex and forming edges from that vertex to
all other vertices of the polygon (also called
“fan triangulation” or “tri-fanning”)1.
Furthermore, a simple polygon with only one
reflex vertex can also be trivially triangulated
as long as all edges are formed from the reflex
vertex.

Figure 2. A convex polygon (a) and non-convex polygon
(b) with only one reflex vertex, both trivially

triangulated.

A simple polygon with two or more reflex
vertices can be triangulated iteratively using a
so-called Ear Clipping algorithm. An ear of a
polygon is defined as a triangle formed by
three consecutive vertices, the middle of
which is a convex vertex, also called tip of the
ear, with two sides being the edges of the
polygon and third side being completely
inside the polygon. It has a property that no
polygon vertices are contained within its
triangle other than the triangle vertices
themselves. According to Meister’s theorem,
any simple polygon with at least four vertices
without holes has at least two ears [4]. Ear
Clipping algorithm works by iterating
through the consecutive vertices, identifying
whether they are convex or reflex, and if a
vertex is found to be convex, it is tested to
fulfill the ear property. Once an ear has been
identified, the triangle formed by the ear tip
and its neighbors is added to the final list of
triangles, and the tip of the ear itself is
removed from the polygon. A newly formed

1 Fan triangulation, although being very simple to achieve, may not
necessary produce a quality triangulation as it may produce triangles
with very sharp edges, also called silver triangles. However, depending on
polygon’s shape and vertex positions, such triangles might be
unavoidable unless new vertices are created during the triangulation
process, which may have certain design consequences and implications,
which are out of the scope of this work.

smaller polygon will continue to meet the
“two ears condition”. The process is then
repeated until there is only one triangle
remaining. A naïve implementation of Ear
Clipping algorithm has time complexity of
O(n3), but it can be optimized to run in O(n2)
time [3][5] and with certain assumptions can
be improved further to have O(k∙n) time
complexity, where k-1 is number of reflex
vertices in polygon [6]. A limitation of this
algorithm is that it does not handle polygons
with holes, let alone multiple polygons with
holes that may contain other filled polygons
inside. Solutions to support holes with Ear
Clipping algorithm have been described in
varying degrees of detail. For instance, both
Mei et al. [7] and Eberly [8] propose merging
inner and outer polygons via coincident
edges. However, there are many
undocumented caveats when dealing with
polygons and their holes having parallel
edges, or vertices that end up being collinear
when connected, as well as other edge cases
that produce self-intersecting polygons that
Ear Clipping algorithm cannot handle.

There are other, more advanced algorithms
that can triangulate polygons, some of which
can handle complex polygons with holes and
self-intersections, most notable being Sweep
Line based algorithms [9] and algorithms
such as Constrained Delaunay Triangulation
[10], among others. However, these
algorithms require more advanced data
structures, while being more difficult to
implement, debug and maintain, which
implies higher development and maintenance
costs. Also, these algorithms similarly to Ear
Clipping algorithm, handle edge cases with
varying degree of success, but due to
increased complexity, the triangulation
problems may be very difficult to debug and
correct. Therefore, for triangulation, Ear
Clipping algorithm was chosen for this work
because of its efficiency, accuracy and low
memory requirements [11], while most effort
was focused on solving the problem with
supporting polygons that can have an
unlimited number of holes inside.

13

 Programación Matemática y Software (2024) 16(1): 11-21. ISSN: 2007-3283

2. TRIANGULATION

For this work, two variations of an Ear
Clipping algorithm were developed:

 a) A high-performance approach, and
 b) Quality approach.

A simple data structure consisting of a
circular double-linked list with custom
memory allocator is used to store vertex
indices and their classification, which is
stored linearly in memory for all of the inner
and outer polygons. This improves CPU cache
locality, which helps to boost overall
performance. Each polygon has a pointer to
an element in the circular double-linked list.
The linked-list nodes are pre-allocated and
when deleted, are simply marked as unused.
The deallocation may occur after
triangulation is finished, or the allocated
memory can be re-used for future
invocations. Polygon vertices are provided as
a separate array of coordinates. Both of the
approaches involve the following steps:

1. For each of the input polygons, populate its
corresponding vertex indices into the
nodes of circular double-linked list.

2. For each polygon, iterate through all nodes
and classify all vertices as convex or reflex:
for vertices that are found to be neither,
the corresponding nodes are removed from
the double-linked list and added to global
list of removed vertex indices. Later on,
such list can optionally be used to
eliminate these vertices from polygons
themselves with posterior remapping of
resulting triangle indices.

3. For each polygon, iterate through all nodes
to search for a right-most vertex (that is,
vertex with highest x coordinate). If
multiple vertices share the same x
coordinate, then a vertex with lower y
coordinate is chosen.

4. Once a right-most vertex for each polygon
is found, check whether it is classified as
convex or reflex. If it is classified as convex,
then set polygon’s winding order as
positive. Otherwise, set polygon’s winding

order as negative and flip all its vertex
classifications from convex to reflex and
vice-versa.

After performing the aforementioned steps,
a winding order is known for each of the
polygons, duplicate and collinear vertices
have been excluded from processing and all
vertices have been classified. If there is a
single polygon, then triangulation can be
performed immediately and the algorithm
terminates. Otherwise, inner polygons
representing the holes have to be identified
by doing polygon in polygon containment
test, and iteratively merged into the outer
polygon one at a time. After this, a single
polygon will remain, the triangulation of
which can then be performed. The concrete
steps depend on the approach taken. For
high-performance approach (a), the steps are
the following:

1. Set walking position to start (or any
existing node) in circular-double linked list.

2. If there is only one reflex vertex left,
perform tri-fanning using the remaining
reflex vertex as origin and terminate.

3. If no reflex vertices are remaining (or only
three vertices left), perform tri-fanning
using the current vertex as origin and
terminate.

4. Continue advancing from the given
position until a convex vertex is found, that
was not previously marked as “not an ear”.
If the whole list has been cycled once and
no such vertex was found, the polygon is
likely not simple, so algorithm terminates
with error.

5. Test the found convex vertex to see if it is
an ear. If it is not, mark it as “not an ear”
and go to step 4.

6. Clip the ear by generating indices for the
appropriate triangle and removing the ear
tip from the list of nodes and advancing the
current position appropriately. Check both
neighbors if they were classified as reflex
and if so, re-classify them, otherwise check
if they were marked as “not an ear” and if
so, delete this remark, so they will have to
be ear-tested again next time.

14

 Programación Matemática y Software (2024) 16(1): 11-21. ISSN: 2007-3283

7. Go to step 2.

As it can be seen from the aforementioned
steps, once an ear has been identified, it is
clipped immediately, so there is no need to
store a list of ears. In fact, a circular double-
linked list can also be avoided altogether if
there is no need to support holes, as the
vertices can be iterated by advancing a set of
three indices {previous, current, next}. For
many practical data sets, this algorithm
reduces the problem complexity quickly to a
trivial triangulation, while also being cache-
friendly due to data linearity and close
proximity of nodes in memory.

For quality approach (b), the steps are the
following:

1. Walk through all nodes and test each
convex vertex to see if it is an ear: if so,
calculate its interior angle, otherwise, mark
it as a “not an ear”.

2. If there are three vertices left, add them to
a list of triangles and terminate.

3. Search for an ear (that is, a convex vertex
that is not marked as “not an ear”) with the
smallest interior angle. If there is none, the
polygon is likely not simple, so algorithm
terminates with error.

4. Clip the ear by generating indices for the
appropriate triangle and removing the ear
tip from the list of nodes. Re-classify both
neighbors to see if they are convex or
reflex. If a neighbor has become convex, or
has previously been marked as “not an ear”,
re-test it to be an ear and if so, re-calculate
its interior angle; otherwise mark it as “not
an ear”.

5. Go to step 2.

The quality approach uses an improved Ear
Clipping algorithm described by Mei et al. [7],
which produces higher-quality triangulations
at the expense of performance. Although the
amortized worst-case time complexity is still
O(n2), all ears have to be tested before any
clipping is to be performed, plus a search for
an ear with smallest interior angle is also
performed iteratively in the loop, leading to

O(n2) time complexity even for convex
polygons. The difference in resulting
triangulation is illustrated below.

Figure 3. A digit “8” and a Japanese letter “Chi”
triangulated using (left) high-performance and (right)

quality approaches.

On Figure 3, four polygons are triangulated
at the same time using both techniques: a
letter “8” is described by an outer polygon
and two inner polygons representing its holes
(all merged into a single master polygon),
whereas the Japanese letter “chi” is described
by a single polygon. The triangles resulting
from the triangulation using quality approach
are generally more desirable in practice
because they have less sharp corners than the
resulting triangles of high-performance
approach. Triangles with sharp corners, or
silver triangles, can have precision issues in
some calculations due to their higher slope.
However, as far as rendering is concerned,
both look visually equivalent: if the lines on
Figure 3 would not be visible, the results from
both techniques would look exactly the same
pixel-wise.

3. HOLE MANAGEMENT

One of the limitations of traditional Ear
Clipping algorithm is that it does not support
holes. However, assuming that inner polygons
describing the holes are specified in reverse
winding order2 of the outer polygon, it is
possible to combine inner polygons into
outer polygon by connecting two directly
visible vertices from inner to outer polygon,
which would form two coincident edges [8].
This results in a single polygon, which can
then be triangulated. The process of choosing
two mutually visible vertices.

2 A winding order refers to how the vertices are specified in 2D space,
either clockwise or counter-clockwise.

15

 Programación Matemática y Software (2024) 16(1): 11-21. ISSN: 2007-3283

Figure 4. An outer polygon with an inner polygon
representing a hole, both merged in to form a single

polygon (a). The second polygon (b) illustrates how the
actual connection is made by using two coincident edges.

As it can be seen on the above figure, an
outer polygon formed by a group of vertices
[0, 5] is merged with an inner polygon formed
by a group of vertices [6, 10]: two additional
edges {2i, 7i} and {2ii, 7ii} are generated by
creating a duplicate pair of vertices 2 and 7. A
new polygon has vertices {0, 1, 2, 2i, 7i, 8, 9, 10,
6, 7ii, 2ii, 3, 4, 5}. Since the inner polygon had
its vertices specified in counter-clockwise
order, whereas outer polygon had vertices
specified clockwise, the newly created
polygon continues to have the same winding
as before, which can be verified by walking
through the list of vertices sequentially on
Figure 4(b). Therefore, the newly formed
polygon can be triangulated by Ear Clipping
algorithm. Generally speaking, once all holes
have been identified and merged into the
outer polygon, as long as the integration
process has been performed correctly, the
following triangulation should be successful.
The integration process is crucial, as
incorrect merging would produce a self-
intersecting polygon, which would make it
unsuitable for triangulation.

In order to merge inner polygon hole, it is
important to identify a pair of vertices: one
from inner polygon and one from outer
polygon, where connection is to be made. A
required property of such pair of vertices is
that they have to be mutually visible.
Mutually visible vertices can be defined as
pair of vertices from two different polygons
that can be connected by a line segment and
such line segment will not intersect any other
vertices or edges from both polygons. Finding

closest visible vertex between two polygons is
a well-studied problem with solutions having
sequential time complexity no worse than
O(n log n) and up to O(n) depending on types
of polygons involved [12][13][14][15][16]. In
their recent work, Mei et al. [7] use a simple
approach by iterating through all vertex pairs
between inner and outer polygon, leading to a
time complexity between O(n2) and O(n3)
depending on the actual implementation.

 In this work, most focus was given on a
solution proposed by David Eberly [8], but
with certain clarifications in the procedure:

1. From the inner polygon, take right-most
vertex M with highest x value3, which was
previously calculated as part of initial
preparation work.

2. Calculate intersections between all edges
of outer polygon that are located to the
right of M (that is, at least one of the edge’s
vertices has x bigger than xM) and a
horizontal ray coming from vertex M.
Select point I among all intersections
calculated this way to be the closest visible
point to M on this ray.

3. If I is a vertex of the outer polygon, then M
and I are mutually visible and the algorithm
terminates.

4. Otherwise, I is an interior point of the edge
in outer polygon. Select P to be one of the
vertices that has highest x value. If both
edge vertices have same x value, then
choose vertex that has lowest y value.

5. Test the reflex vertices of the outer
polygon, excluding P if it happens to be
reflex, that are on the right side of the
vertex M, to see if they are within the
triangle formed by {M, I, P}. If all of them
are strictly outside the triangle, then M and
P are mutually visible and the algorithm
terminates.

6. Otherwise, select one reflex vertex R
among aforementioned ones that lies
inside the triangle {M, I, P} that minimizes
the angle between {M, I} and {M, R}. If there

3 The choice of min/max and axis is arbitrary: instead of maximum X value,
it can be maximum Y, or minimum on either of the axes. For instance,
Wijeweera et al. [11] uses maximum Y, which is also valid: it just requires
changing all steps in this work analogously.

16

 Programación Matemática y Software (2024) 16(1): 11-21. ISSN: 2007-3283

are multiple vertices with a similar angle
within certain threshold, then select vertex
that is closest to M. Vertices R and M
would be mutually visible and the
algorithm terminates.

Figure 5. a) Right-most vertex P on intersected edge is
directly visible and b) Right-most vertex P is not directly
visible, but there are three reflex vertices inside triangle
{M, I, P}, one of which (drawn in color) is determined to

be mutually visible with M.

The aforementioned approach is relatively
simple to implement and quite efficient. It
requires n1 steps calculating intersections
with edges of the outer polygon and n2 steps
testing reflex vertices, leading to an
amortized time complexity of O(n) for any
types of polygons involved. In addition, a
right-most vertex that was previously found
to determine the winding order can also be
reused for merging, without the need of an
additional search.

3. HANDLING MULTIPLE HOLES

When a polygon has multiple holes, they can
be merged iteratively one at a time using
aforementioned approach, choosing inner
polygon with a right-most vertex that has
highest x coordinate each time. In case two
or more inner polygons have right-most
vertex with the same x coordinate, then the
one is chosen that has lowest y coordinate
first.

This iterative approach would not work,
however, for many common situations such
as shown on Figure 6: first, a polygon with
right-most vertex A is merged into the outer
polygon, with closest visible vertex
determined to be P as shown on image (a).
This would split vertex P into P1 and P2, and
vertex A into A1 and A2; second, a polygon

with right-most vertex B is merged into the
outer polygon, the closest intersection point
will lie on both coincident edges {P1, A1} and
{A2, P2}. If an intersection on edge {A2, P2} is
chosen, which would select P2 as closest
visible vertex, then the resulting connection
with produce a self-intersecting polygon.

Furthermore, as it can be seen on an
illustrative image Figure 6(b), the correct
closest intersection point should definitely lie
on edge {P1, A1}, but since both edges are
coincident, this cannot be determined
numerically. A solution to this problem
requires detecting coincident edges during
intersection calculation, which should be
trivial, as both edges would refer to the same
vertex indices in the polygon, except in
opposite order. If an intersection with a
second coincident edge is detected, then a
signed triangle area should be calculated the
hole’s right-most vertex and two vertices of
the edge4 and the preference should be given
to the edge, that has the sign of signed
triangle area matching the winding order of
the outer polygon. In other words, as in case
of Figure 6(b), point B must be located to the
right of intersecting edge, in which case it
would be {P1, A1} (if one is standing directly at
point P1 looking in the direction of point A1);
accordingly, in case of edge {A2, P2}, the point
B will appear on left side.

Figure 6. A hole with right-most vertex B is merged into
outer polygon, which had previously hole with right-

most vertex A (a) and the same situation (b), where two
coincident edges are separated for illustrative purposes
and (c), where intersection happens directly at vertex P.

However, there is another situation, which
also requires attention: if an intersection like
on Figure 6(c) would happen directly at vertex

4 This signed triangle area is also used to calculate whether a particular
vertex is convex or reflex.

17

 Programación Matemática y Software (2024) 16(1): 11-21. ISSN: 2007-3283

P, there would be actually four intersecting
edges: {T1, P1}, {P1, A1}, {A2, P2} and {P2, T2}. Two
of these edges would give point P1 as visible
vertex, whereas other two would give point
P2. In other words, edges {P1, A1} and {A2, P2}
will be handled according to the strategy
described above, but the other two would still
result in an ambiguous situation that could
potentially produce a self-intersection. A
solution to this problem is to detect when
another edge has intersection point within
certain minimum threshold of the current
intersection (in other words, very similar x
coordinate), then choose an edge that
minimizes the angle between an edge in
question and a line segment between right-
most vertex and the intersection point. In
case of current situation, this would give
preference to coincident edges {P1, A1} and
{A2, P2}, which would be resolved according to
strategy above (which should have higher
preference priority than the angle test as
both edges would produce the same angle). It
can be observed on Figure 6(c), using the
minimum interior angle criteria, edge {P, T2}
will always be the least preferred because it
will always have interior angle higher than
the one of coincident edges. If point T1 is
moved so edge {T1, P} will have smallest
interior angle, then it would still result in
proper duplicate vertex P (P1 in previous
image) to be selected as mutually visible
vertex.

4. RESULTS AND DISCUSSION

In this work, both of the approaches have
been implemented in C++ and integrated into
a commercial framework for development of
industrial CAD applications. The triangulation
with holes provided by both of the
approaches after testing with existing data
sets seems to be very robust: as long as inner
and outer polygons do not intersect each
other and/or themselves, the techniques
succeed with an accurate triangulation, even
when working exclusively with 32-bit
floating-point data types. The solutions
proposed in this work were developed during

the debug process of the initially prototyped
technique, which was failing for many test
cases. However, with the proposed solutions,
the technique satisfies all the requirements
for production use in industrial
environments. As the number of data nodes
can be known based on the number of
vertices and number of polygons, the working
memory can be pre-allocated and then re-
used for all consecutive invocations, which
rules out any potential memory
fragmentation issues, so the final application
can be left running for an indeterminate
amount of time without the need of restart.
Some of the triangulation results are shown
below.

Figure 7. Chinese letter “Yǎn” and a rectangle with many

randomly placed rectangular holes triangulated using
high-performance (dark gray) and quality approaches

(beige). .

As it can be seen on the above Figure 7, not
all situations benefit from additional
performance costs involved with the quality
approach. When very simple polygons are
used such as triangles or rectangles and the
techniques do not produce any new vertices,
there are too few existing vertices to choose
from, so the resulting triangulation will
produce sharp triangles no matter what
approach is used. Therefore, while a Japanese
letter “Chi” from Figure 3 contains smooth
curves and benefits from quality approach, a
Chinese letter “Yǎn” from above image has
mostly flat contours and results in a

18

 Programación Matemática y Software (2024) 16(1): 11-21. ISSN: 2007-3283

satisfactory triangulation even with high-
performance approach.

Figure 8. A rectangle with two different types of holes
triangulated using high-performance (dark gray) and

quality approaches (beige).

A spatial orientation of the rectangles does
not seem to affect the situation as it can be
seen on the above Figure 8 on last two
images. However, as number of vertices
increase, the quality approach starts to
produce much better triangulation results as
it can be seen on the first two images from
the aforementioned figure.

Table 1. Performance benchmarks between high-
performance and quality techniques from four different

data sets.
Variant Polygons Vertices Triangles Speed

(triangles/sec)
High-perf 2 16 16 24,242,424

Quality 11,034,482
High-perf 70 1778 1692 14,461,538

Quality 4,327,365
High-perf 604 11344 10721 6,742,767

Quality 3,089,625
High-perf

106 6724 6932
110,912

Quality 41,633

A couple of sample performance
benchmarks between two variants used in
this work were performed, involving four
different data sets, to give an idea of expected
throughput. The application was compiled
using GNU GCC compiler version 11.2 using
optimization level 3 and executed on a
machine with AMD Ryzen 3950X processor at
stock speeds, with 128Gb of DDR4 RAM
running at 3600 Mhz. The tests were done

using only a single core. A first data set was a
simple letter “A” from Segue UI font. A second
data set was a portion of “Lorem ipsum” text.
A third data set was a big portion of text from
Japanese version of “Lorem ipsum” text and a
fourth data set used a rectangle with many
high-quality circles inside similar to those
visible on Error: no se encontró el origen de
la referencia. As it can be seen from the
results shown on Table 1, high-performance
variant for the most common polygon shapes
produces a whooping several millions of
triangles per second. As for the fourth data
set, it is unique because more than 99% of its
vertices are reflex (all except for the 4 points
at rectangle’s corners), which results in a
perfect worst-case scenario for both
algorithm variants, which due to their O(n2)
worst-case time complexity struggle in this
specific scenario.

The following images are taken as
screenshots from an actual CAD application,
which uses the technique to produce 3D
meshes using an extrusion technique: once a
triangular mesh has been produced, any
unused vertices that were identified as
duplicate or collinear, the nodes of which
were initially removed, are excluded from the
polygons. Following this, side triangles are
generated by iterating through the polygons
and calculating the appropriate normals. An
angle between two consecutive edges is used
to determine if vertex normal can be re-used
between two consecutive rectangular
sections consisting of two triangles and if not,
a triangle normal is used for “flat” sides.

Figure 9. A screenshot of the proposed solution used in a
real CAD application, which includes a rectangle with
many circular holes as well as 3D text extruded from a

triangulated mesh.

19

 Programación Matemática y Software (2024) 16(1): 11-21. ISSN: 2007-3283

The resulting image that can be seen on the
Figure 9 using either of the techniques
proposed in this work is visually
indistinguishable, even when a color gradient
is produced by using different vertex colors
calculated according to their spatial position,
when rendered on GPU. However, this may
not always be the case, for instance, when
performing a software rasterization using
limited precision arithmetic or doing per-
vertex lighting.

Figure 10. A screenshot of the proposed solution used in
a real CAD application, which shows a phrase in Japanese

language rendered as a 3D text model, generated by
using extrusion from a triangulated mesh.

Finally, as it can be seen on the above Figure
10, non-trivial character glyphs such as those
from Japanese language, containing multiple
holes, can be triangulated accurately,
producing a high-quality visualization of the
resulting 3D text.

5. CONCLUSION AND FUTURE WORK

It is common in the area of industrial
applications, for visual real-time software to
work with data models that can be described
using polygonal shapes. However, many
algorithms that run on GPU expect the data
to be provided in form of triangles. Therefore,
the polygons need to be converted into
triangles using a process called triangulation.
Many existing solutions exist that enable
polygon triangulation: simpler ones cannot
handle holes at all, while most modern
solutions require advanced data structures,
requiring significant implementation and
debugging effort, which increases
development costs.

In this work, an alternative solution based
and improved upon an Ear Clipping algorithm
is proposed, with two variations of the
technique that can meet different
requirements based on speed and quality. It
supports complex shapes defined in form of
an outer polygon and one or more inner
polygons that describe its holes, assuming
that none of the polygons intersect each
other or themselves. The proposed solution
supports any number of holes in polygon and,
as it has been shown in the experiments,
produces accurate results even when
implemented exclusively using 32-bit
floating-point arithmetic.

The proposed solution has been integrated
into an existing commercial framework for
development of industrial applications with
3D visual content. This work includes images
from a real CAD application that uses both
variations of the proposed techniques to
produce an actual 3D meshes that can be
rendered directly on the GPU.

Future work involves further improvements
in the proposed solution to reduce number of
arithmetic operations and increase real-time
performance. This is especially important
when the polygon to be triangulated has large
number of reflex vertices, triggering worst-
case scenario with time complexity of O(n2).
One area of interest for further investigation
is to leverage trapezoidal decomposition such
as described by Seidel [17] for the
aforementioned use-cases, which
significantly improves time complexity and
could potentially increase the real-time
performance significantly.

6. ACKNOWLEDGMENTS

This work has been made in memory of my
mother, Dra. Prof. Svitlana Koshova (1941 –
2022), who has always been an inspiration for
me as a brilliant scientist, a good colleague
and a best mother I could ever have. She has
been very supportive both in my professional
work and in in real life, providing guidance

20

 Programación Matemática y Software (2024) 16(1): 11-21. ISSN: 2007-3283

and advice always at the right moment and
the right place. Dra. Koshova is missed by her
sons and grandsons. May she rest in peace.

REFERENCES

[1] Garey, M.R., Johnson, D.S., Preparata, F.P., Tarjan,
R.E. Triangulating a simple polygon. Information
Processing Letters, 1978, 7(4), 175-179. doi:
10.1016/0020-0190(78)90062-5.

[2] Berg, M., Cheong, O., Kreveld, M., Overmars, M.
Computational Geometry. Berlin: Springer, 2008. doi:
10.1007/978-3-540-77974-2.

[3] O'Rourke, J. Computational Geometry in C.
Cambridge: Cambridge University Press, 1998. doi:
10.1017/CBO9780511804120.

[4] Meisters, G.H. Polygons Have Ears. The American
Mathematical Monthly. 1975, 82(6), 648-651. doi:
10.1080/00029890.1975.11993898.

[5] ElGindy, H., Everett, H., Toussaint, G. Slicing an ear
using prune-and-search. Pattern Recognition Letters.
1993, 14(9), 719-722. doi: 10.1016/0167-8655(93)90141-
Y.

[6] Kong, X., Everett, H., Toussaint, G. The Graham scan
triangulates simple polygons. Pattern Recognition
Letters, 1990, 11(11). 713-716. doi: 10.1016/0167-
8655(90)90089-K.

[7] Mei, G., Tipper, J.C., Xu, N. Ear-Clipping Based
Algorithms of Generating High-Quality Polygon
Triangulation. In 2012 Int. Conf. on Information
Technology and Software Engineering. LNEE, 2012,
212, 979-988. doi: 10.1007/978-3-642-34531-9_105.

[8] Eberly, D. Triangulation by Ear Clipping. Geometric
Tools. Nov. 18, 2002. Accessed August 4, 2023 from
https://www.geometrictools.com/Documentation/
Documentation.html

[9] Preparata, F.P., Shamos, M.I. Computational
Geometry: An Introduction. New York, NY: Springer,
1985. doi: 10.1007/978-1-4612-1098-6.

[10] Chew, L.P. Constrained Delaunay triangulations.
Algorithmica, 1989, 4, 97-108. doi:
10.1007/BF01553881.

[11] Wijeweera, K.R., Kodituwakku. S.R. Accurate, Simple
and Efficient Triangulation of a Polygon by Ear
Removal. Ceylon Journal of Science, 2016, 45(3), 65-
76. doi: 10.4038/cjs.v45i3.7402.

[12] McKenna, M., Toussaint, G.T. Finding the minimum
vertex distance between two disjoint convex
polygons in linear time. Computer & Mathematics
with Applications. 1985, 11(12), 1227-1242. doi:
10.1016/0898-1221(85)90109-9.

[13] Toussaint, G.T. An optimal algorithm for computing
the minimum vertex distance between two crossing
convex polygons. Computing. 1984, 32, 357-364. doi:
10.1007/BF02243778.

[14] Aggarwal, A., Moran, S. Shor, P.W. Suri. S. Computing
the minimum visible vertex distance between two
polygons. In Workshop on Algorithms and Data
Structures (WADS 1989). LNCS, 1989, 382, 115-134. doi:
10.1007/3-540-51542-9_11.

[15] Amato, N.M. An optimal algorithm for finding the
separation of simple polygons. In Workshop on
Algorithms and Data Structures (WADS 1993). LNCS,
1993, 709, 48-59. doi: 10.1007/3-540-57155-8_235.

[16] Wang, C., Chan, E.P.F. Finding the minimum visible
vertex distance between two non-intersecting
simple polygons. Second Annual Symposium on
Computational Geometry. ACM, 1986, 34-42. doi:
10.1145/10515.10519.

[17] Seidel, R. A simple and fast incremental randomized
algorithm for computing trapezoidal decompositions
and for triangulating polygons. Computational
Geometry, 1991, 1(1), 51-64. doi: 10.1016/0925-
7721(91)90012-4.

ACERCA DEL AUTOR

Dr. Yuriy Kotsarenko is a
researcher, developer,
and entrepreneur with a
doctoral degree in
Computer Sciences
from 2011. He has
authored more than a
dozen scientific articles

and holds multiple registered trademarks and
copyrighted materials. Yuriy is a founder and
operator of Afterwarp Interactive, a
consulting firm specializing in providing
products and services, particularly robust
real-time visual applications for the industrial
sector. His primary research interests lie in
massively parallel processing on GPUs,
GPGPU techniques and 3D visualization.

21

https://doi.org/10.1016/0925-7721(91)90012-4
https://doi.org/10.1016/0925-7721(91)90012-4
https://doi.org/10.1145/10515.10519
https://doi.org/10.1007/3-540-57155-8_235
https://doi.org/10.1007/3-540-51542-9_11
https://doi.org/10.1007/BF02243778
https://doi.org/10.1016/0898-1221(85)90109-9
https://doi.org/10.4038/cjs.v45i3.7402
https://doi.org/10.1007/BF01553881
https://doi.org/10.1007/978-1-4612-1098-6
https://www.geometrictools.com/Documentation/Documentation.html
https://www.geometrictools.com/Documentation/Documentation.html
https://doi.org/10.1007/978-3-642-34531-9_105
https://doi.org/10.1016/0167-8655(90)90089-K
https://doi.org/10.1016/0167-8655(90)90089-K
https://doi.org/10.1016/0167-8655(93)90141-Y
https://doi.org/10.1016/0167-8655(93)90141-Y
https://doi.org/10.1080/00029890.1975.11993898
https://doi.org/10.1017/CBO9780511804120
https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1016/0020-0190(78)90062-5

	1. INTRODUCTION
	2. TRIANGULATION
	3. HOLE MANAGEMENT
	3. HANDLING MULTIPLE HOLES
	4. RESULTS AND DISCUSSION
	5. CONCLUSION AND FUTURE WORK
	6. ACKNOWLEDGMENTS

