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ABSTRACT

In industrial applications such as CAD modeling, manufacture or automated systems, it is common to
work with data models that are represented by polygonal shapes, or models that produce polygonal
shapes out of complex geometry defined by lines and curves. However, this data has to be converted to
a triangular mesh before it  can be processed and/or rendered by the GPU. Existing solutions that
generate triangular mesh out of polygonal shapes either do not support holes or have limitations on
how many holes can be present at the same time. Most modern advanced solutions need considerable
effort to implement, debug and maintain, which involves significant development costs. 
In  this  work,  an  alternative  solution  is  proposed,  which  is  relatively  simple  to  implement  yet  is
sufficiently  robust  to  handle  all  possible  input  scenarios  handling  any  number  of  holes,  or  inner
polygons in an outer polygon, assuming that polygons do not intersect each other or themselves, and
makes no assumptions about the winding order of polygon vertices. The proposed solution involves
initial  pre-processing  work,  merging  inner  polygons  into  an  outer  polygon,  and  then  performing
polygon triangulation  using  one of  the  two proposed variations  of  an  Ear  Clipping  algorithm.  The
proposed  solution  is  shown  to  handle  practically  an  unlimited  number  of  holes  in  polygon
independently  of  its  shape.  Quality  and  performance  comparison  between  two  techniques  is  also
provided and discussed, along with the images of a real life CAD application, which implements the
proposed solution.
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RESUMEN 

En aplicaciones industriales tales como el modelado CAD, la industria de fabricación o los sistemas
automatizados, es común trabajar con modelos de datos que representan contornos poligonales, o con
los modelos que general polígonos a partir de una geometría compleja que se define mediante líneas y
curvas. Sin embargo, para que estos datos pueden ser procesados y/o rendereados por GPU, los datos
se tienen que convertir en una serie de triángulos. Las soluciones existentes que general triángulos a
partir de contornos poligonales no son capaces de trabajar con orificios o se limiten a un cierto número
de orificios  que  pueden estar  presentes  al  mismo tiempo.  La mayoría  de las  soluciones modernas
avanzadas  requieren  de  un  esfuerzo  considerable  para  su  implementación,  depuración  y
mantenimiento, lo que a su vez produce ciertas implicaciones importantes en cuestión de costos de
desarrollo.
En este trabajo, una solución alternativa se propone, siendo relativamente fácil de implementar y al
mismo tiempo suficientemente robusta para manejar cualquier posible entrada de datos, incluyendo
cualquier número de orificios e incluso cualquier número de polígonos internos, siempre y cuando los
polígonos no se cruzan entre sí ni se auto-cruzan a sí mismos. La solución propuesta tampoco depende
de un orden determinado de los vértices del polígono, solo necesita que este orden sea consistente. La
solución propuesta involucra un pre-procesamiento inicial, donde los polígonos internos se integran a
los polígonos externos. Una vez hecho esto, se hace una triangulación de polígonos utilizando una de
las dos variaciones de técnicas propuestas que se basan en algoritmo de “Ear Clipping”. En este trabajo
se  muestra  que  la  solución  propuesta  puede  trabajar  con  el  número  de  orificios  prácticamente
ilimitados  independientemente  de  su  forma.  Este  trabajo  también  incluye  una  comparativa  de
evaluación de calidad y desempeño entre las dos técnicas propuestas, incluyendo unas imágenes de una
aplicación CAD que utiliza estas soluciones de manera práctica.
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1. INTRODUCTION

In  industrial  applications  such  as
construction,  manufacture  or  automated
systems, it is common to work with complex
objects,  diagrams  and/or  obstacles,  which
are  often  described  in  terms  polygonal
shapes.  In  other  situations,  an  object  or  a
model  may  be  described  in  terms  of
primitives  such curves  and arcs,  which  can
then  be  approximated  to  a  polygon  using
certain degree of accuracy by subdividing the
primitive into line segments of finite length.
The  resulting  polygons  may  have  irregular,
strange looking shapes and may even contain
holes,  which  would  represent  irregular
polygon themselves. One such example could
be a real-time Computer Aided Design (CAD)
application that works with vector and/or 3D
graphics has drawings and text  represented
as a series of  curves forming closed shapes
with  holes.  Another  example  would  be  an
electronic  circuit  design  software,  working
with  a  data  model  of  printed  circuit  board
plate  with  holes,  interconnections  and
electronic  components.  In  order  to  present
the  information  visually  using  Graphics
Processing  Unit  (GPU),  both  applications
would need to convert their representations
into triangular meshes. 

As a result, it is very common in the industry
to deal with a problem of converting one or
more  polygonal  shapes  into  a  series  of
triangles. This is called triangulation and can
be formally defined as the decomposition of a
polygonal  area  into  a  set  of  triangles [1][2].
Depending on how many polygons need to be
triangulated,  their  shape,   complexity  and
whether  or  not  they  have  holes,  the
triangulation process may vary greatly from
being trivial to quite difficult problem with a
large number of possible solutions,  some of
which  could  be  satisfactory  for  a  given
particular situation, whereas others would be
unacceptable.

For the purposes of this work, a polygon is
defined by a series of points, where each pair

of consecutive vertices,  along with first and
last ones, are connected by edges. As long as
edges do not intersect each other except at
their  respective  vertices  and  each  vertex
shares  exactly  two  edges,  such  polygon  is
called a simple polygon; otherwise, it is called
a complex polygon.

Figure 1. A simple polygon (a) and two complex polygons:
(b) and (c). 

On  Figure  1,  three  different  polygons  are
shown. The first polygon (a) is simple because
it  fulfills  aforementioned  conditions.  The
second polygon  (b) is not simple because its
vertex at the center is shared by more than
two  edges,  and  the  last  polygon  (c) is  not
simple  because  there  are  multiple
intersections  between  the  edges  at  points
that are not vertices.  Also,  this last  polygon
presents  additional  challenges  because  it
requires  generation  of  new  vertices  where
edges  intersect  and  such  newly  generated
vertices  themselves  will  also  be  shared  by
more  than  two  edges.  In  the  scope  of  this
work,  only  simple  polygons  will  be
considered. In polygon on Figure 1(a), vertices
{0, 1, 4, 5, 7, 9} are considered convex, whereas
vertices {2, 3, 6, 8, 10} are  reflex  (also known
as  concave).  A  vertex  is  considered  convex,
when  its  interior  angle  is  smaller  than  π
radians  and  the  line  segment  between  its
neighboring  vertices  lies  completely  inside
the  polygon;  otherwise,  the  vertex  is
considered  reflex.  A polygon with  n vertices
may have up to  n-2 vertices that  are reflex
and  up  to  n vertices  that  are  convex.  If  a
simple polygon has all  vertices  convex,  such
polygon  is  called  convex  polygon.  A
triangulation  of  a  polygon  with  n vertices
produces  n-2 triangles  [3]. A convex polygon
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can  be  trivially  triangulated  by  choosing  a
vertex and forming edges from that vertex to
all other vertices of the polygon (also called
“fan  triangulation”  or  “tri-fanning”)1.
Furthermore, a simple polygon with only one
reflex vertex can also be trivially triangulated
as long as all edges are formed from the reflex
vertex.

Figure 2. A convex polygon (a) and non-convex polygon
(b) with only one reflex vertex, both trivially

triangulated.

A simple  polygon with two or  more  reflex
vertices can be triangulated iteratively using a
so-called  Ear Clipping algorithm. An ear of a
polygon  is  defined  as  a  triangle  formed  by
three  consecutive  vertices,  the  middle  of
which is a convex vertex, also called tip of the
ear,  with  two  sides  being  the  edges  of  the
polygon  and  third  side  being  completely
inside the polygon. It has a property that no
polygon  vertices  are  contained  within  its
triangle  other  than  the  triangle  vertices
themselves. According to Meister’s theorem,
any simple polygon with at least four vertices
without holes has at  least two  ears [4].  Ear
Clipping algorithm  works  by  iterating
through the consecutive vertices, identifying
whether  they  are  convex or  reflex,  and  if  a
vertex is  found to be  convex,  it  is  tested to
fulfill the ear property. Once an ear has been
identified, the triangle formed by the  ear tip
and its neighbors is added to the final list of
triangles,  and  the  tip  of  the  ear itself  is
removed from the polygon.  A newly formed

1 Fan  triangulation,  although  being  very  simple  to  achieve,  may  not
necessary  produce  a  quality  triangulation as  it  may  produce  triangles
with very sharp edges, also called silver triangles. However, depending on
polygon’s  shape  and  vertex  positions,  such  triangles  might  be
unavoidable  unless  new  vertices  are  created  during  the  triangulation
process, which may have certain design consequences and implications,
which are out of the scope of this work.

smaller  polygon  will  continue  to  meet  the
“two  ears  condition”.  The  process  is  then
repeated  until  there  is  only  one  triangle
remaining.  A  naïve  implementation  of  Ear
Clipping algorithm  has  time  complexity  of
O(n3), but it can be optimized to run in O(n2)
time [3][5] and with certain assumptions can
be  improved  further  to  have  O(k∙n)  time
complexity,  where  k-1  is  number  of  reflex
vertices  in  polygon  [6].  A  limitation  of  this
algorithm is that it does not handle polygons
with holes,  let  alone multiple polygons with
holes that may contain other filled polygons
inside.  Solutions  to  support  holes  with  Ear
Clipping algorithm  have  been  described  in
varying degrees of detail.  For instance, both
Mei et al.  [7] and Eberly [8] propose merging
inner  and  outer  polygons  via  coincident
edges.  However,  there  are  many
undocumented  caveats  when  dealing  with
polygons  and  their  holes  having  parallel
edges, or vertices that end up being collinear
when connected, as well as other edge cases
that produce self-intersecting polygons that
Ear Clipping algorithm cannot handle.

There are other, more advanced algorithms
that can triangulate polygons, some of which
can handle complex polygons with holes and
self-intersections, most notable being  Sweep
Line based  algorithms  [9] and  algorithms
such as  Constrained Delaunay Triangulation
[10],  among  others.  However,  these
algorithms  require  more  advanced  data
structures,  while  being  more  difficult  to
implement,  debug  and  maintain,  which
implies higher development and maintenance
costs. Also, these algorithms similarly to  Ear
Clipping algorithm,  handle  edge  cases  with
varying  degree  of  success,  but  due  to
increased  complexity,  the  triangulation
problems may be very difficult to debug and
correct.  Therefore,  for  triangulation,  Ear
Clipping algorithm was chosen for this work
because  of  its  efficiency,  accuracy  and  low
memory requirements  [11], while most effort
was  focused  on  solving  the  problem  with
supporting  polygons  that  can  have  an
unlimited number of holes inside. 
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2. TRIANGULATION

For  this  work,  two  variations  of  an  Ear
Clipping algorithm were developed: 

    a) A high-performance approach, and
    b) Quality approach. 

A  simple  data  structure  consisting  of  a
circular  double-linked  list  with  custom
memory  allocator  is  used  to  store  vertex
indices  and  their  classification,  which  is
stored linearly in memory for all of the inner
and outer polygons. This improves CPU cache
locality,  which  helps  to  boost  overall
performance. Each polygon has a pointer to
an element in the circular double-linked list.
The  linked-list  nodes  are  pre-allocated  and
when deleted, are simply marked as unused.
The  deallocation  may  occur  after
triangulation  is  finished,  or  the  allocated
memory  can  be  re-used  for  future
invocations. Polygon vertices are provided as
a separate array of coordinates.  Both of the
approaches involve the following steps:

1. For each of the input polygons, populate its
corresponding  vertex  indices  into  the
nodes of circular double-linked list. 

2. For each polygon, iterate through all nodes
and classify all vertices as convex or reflex:
for vertices  that  are found to  be neither,
the corresponding nodes are removed from
the double-linked list and added to global
list  of  removed  vertex  indices.  Later  on,
such  list  can  optionally  be  used  to
eliminate  these  vertices  from  polygons
themselves  with  posterior  remapping  of
resulting triangle indices. 

3. For each polygon, iterate through all nodes
to search for a right-most vertex (that is,
vertex  with  highest  x  coordinate).  If
multiple  vertices  share  the  same  x
coordinate,  then  a  vertex  with  lower  y
coordinate is chosen.

4. Once a right-most vertex for each polygon
is found, check whether it is classified as
convex or reflex. If it is classified as convex,
then  set  polygon’s  winding  order  as
positive.  Otherwise, set polygon’s winding

order  as  negative  and  flip  all  its  vertex
classifications  from  convex  to  reflex  and
vice-versa. 

After performing the aforementioned steps,
a  winding  order  is  known  for  each  of  the
polygons,  duplicate  and  collinear  vertices
have been excluded from processing and all
vertices  have  been  classified.  If  there  is  a
single  polygon,  then  triangulation  can  be
performed  immediately  and  the  algorithm
terminates.  Otherwise,  inner  polygons
representing the holes have to be identified
by  doing  polygon  in  polygon  containment
test,  and  iteratively  merged  into  the  outer
polygon  one  at  a  time.  After  this,  a  single
polygon  will  remain,  the  triangulation  of
which can then be performed. The concrete
steps  depend  on  the  approach  taken.  For
high-performance approach (a), the steps are
the following:

1. Set  walking  position  to  start  (or  any
existing node) in circular-double linked list.

2. If  there  is  only  one  reflex vertex  left,
perform  tri-fanning  using  the  remaining
reflex vertex as origin and terminate.

3. If no  reflex vertices are remaining (or only
three  vertices  left),  perform  tri-fanning
using  the  current  vertex  as  origin  and
terminate.

4. Continue  advancing  from  the  given
position until a convex vertex is found, that
was not previously marked as “not an ear”.
If the whole list has been cycled once and
no such vertex was found, the polygon is
likely not simple,  so algorithm terminates
with error.

5. Test the found convex vertex to see if it is
an  ear. If it is not, mark it as “not an ear”
and go to step 4.

6. Clip the ear by generating indices for the
appropriate triangle and removing the  ear
tip from the list of nodes and advancing the
current position appropriately. Check both
neighbors if  they were classified as  reflex
and if so, re-classify them, otherwise check
if they were marked as “not an ear” and if
so, delete this remark, so they will have to
be ear-tested again next time.
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7. Go to step 2.

As it can be seen from the aforementioned
steps,  once an  ear has been identified,  it  is
clipped immediately,  so there is  no need to
store a list of ears. In fact, a circular double-
linked list  can  also  be  avoided altogether  if
there  is  no  need  to  support  holes,  as  the
vertices can be iterated by advancing a set of
three  indices  {previous,  current,  next}.  For
many  practical  data  sets,  this  algorithm
reduces the problem complexity quickly to a
trivial  triangulation, while also being cache-
friendly  due  to  data  linearity  and  close
proximity of nodes in memory. 

For quality approach (b),  the steps are the
following:

1. Walk  through  all  nodes  and  test  each
convex vertex to  see if  it  is  an  ear:  if  so,
calculate its interior angle, otherwise, mark
it as a “not an ear”.

2. If there are three vertices left, add them to
a list of triangles and terminate.

3. Search for an ear (that is, a  convex vertex
that is not marked as “not an ear”) with the
smallest interior angle. If there is none, the
polygon is  likely  not  simple,  so  algorithm
terminates with error.

4. Clip the ear by generating indices for the
appropriate triangle and removing the ear
tip from the list of nodes. Re-classify both
neighbors  to  see  if  they  are  convex or
reflex. If a neighbor has become convex, or
has previously been marked as “not an ear”,
re-test it to be an ear and if so, re-calculate
its interior angle; otherwise mark it as “not
an ear”. 

5. Go to step 2.

The quality approach uses an improved Ear
Clipping algorithm described by Mei et al. [7],
which produces higher-quality triangulations
at the expense of performance. Although the
amortized worst-case time complexity is still
O(n2),  all  ears  have to  be tested  before any
clipping is to be performed, plus a search for
an  ear  with  smallest  interior  angle  is  also
performed iteratively in the loop, leading to

O(n2)  time  complexity  even  for  convex
polygons.  The  difference  in  resulting
triangulation is illustrated below.
 

   

Figure 3. A digit “8” and a Japanese letter “Chi”
triangulated using (left) high-performance and (right)

quality approaches.

On Figure 3, four polygons are triangulated
at  the  same  time  using  both  techniques:  a
letter  “8”  is  described  by  an  outer  polygon
and two inner polygons representing its holes
(all  merged  into  a  single  master polygon),
whereas the Japanese letter “chi” is described
by  a  single  polygon.  The  triangles  resulting
from the triangulation using quality approach
are  generally  more  desirable  in  practice
because they have less sharp corners than the
resulting  triangles  of  high-performance
approach.  Triangles  with  sharp  corners,  or
silver  triangles,  can have precision issues in
some calculations due to their higher slope.
However,  as  far  as  rendering  is  concerned,
both look visually equivalent:  if  the lines on
Figure 3 would not be visible, the results from
both techniques would look exactly the same
pixel-wise.

3. HOLE MANAGEMENT

One  of  the  limitations  of  traditional  Ear
Clipping algorithm is that it does not support
holes. However, assuming that inner polygons
describing the holes are specified in reverse
winding  order2 of  the  outer  polygon,  it  is
possible  to  combine  inner  polygons  into
outer  polygon  by  connecting  two  directly
visible vertices from inner to outer polygon,
which would form two coincident edges  [8].
This  results  in  a  single  polygon,  which  can
then be triangulated. The process of choosing
two mutually visible vertices.  

2 A winding order refers to  how the vertices are specified in 2D space,
either clockwise or counter-clockwise.
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Figure 4. An outer polygon with an inner polygon
representing a hole, both merged in to form a single

polygon (a). The second polygon (b) illustrates how the
actual connection is made by using two coincident edges.

As it  can be seen on the above figure,  an
outer polygon formed by a group of vertices
[0, 5] is merged with an inner polygon formed
by a group of vertices [6, 10]: two additional
edges  {2i,  7i}  and  {2ii,  7ii}  are  generated  by
creating a duplicate pair of vertices 2 and 7. A
new polygon has vertices {0, 1, 2, 2i, 7i, 8, 9, 10,
6, 7ii, 2ii, 3, 4, 5}. Since the inner polygon had
its  vertices  specified  in  counter-clockwise
order,  whereas  outer  polygon  had  vertices
specified  clockwise,  the  newly  created
polygon continues to have the same winding
as before,  which can be verified by walking
through  the  list  of  vertices  sequentially  on
Figure  4(b).  Therefore,  the  newly  formed
polygon can be triangulated by Ear Clipping
algorithm. Generally speaking, once all holes
have  been  identified  and  merged  into  the
outer  polygon,  as  long  as  the  integration
process  has  been  performed  correctly,  the
following triangulation should be successful.
The  integration  process  is  crucial,  as
incorrect  merging  would  produce  a  self-
intersecting  polygon,  which  would  make  it
unsuitable for triangulation.

In order to merge inner polygon hole, it is
important to identify a pair of  vertices:  one
from  inner  polygon  and  one  from  outer
polygon, where connection is to be made. A
required property of such pair of vertices is
that  they  have  to  be  mutually  visible.
Mutually  visible  vertices can  be  defined  as
pair of  vertices from two different polygons
that can be connected by a line segment and
such line segment will not intersect any other
vertices or edges from both polygons. Finding

closest visible vertex between two polygons is
a well-studied problem with solutions having
sequential  time  complexity  no  worse  than
O(n log n) and up to O(n) depending on types
of  polygons  involved   [12][13][14][15][16].  In
their recent work, Mei et al.  [7] use a simple
approach by iterating through all vertex pairs
between inner and outer polygon, leading to a
time  complexity  between  O(n2)  and  O(n3)
depending on the actual implementation. 

 In  this  work,  most  focus  was  given  on  a
solution  proposed  by  David  Eberly  [8],  but
with certain clarifications in the procedure:

1. From  the  inner  polygon,  take  right-most
vertex  M with highest  x value3, which was
previously  calculated  as  part  of  initial
preparation work.

2. Calculate  intersections  between  all  edges
of  outer  polygon  that  are  located  to  the
right of M (that is, at least one of the edge’s
vertices  has  x bigger  than xM)  and  a
horizontal  ray  coming  from  vertex  M.
Select  point  I among  all  intersections
calculated this way to be the closest visible
point to M on this ray.

3. If I is a vertex of the outer polygon, then M
and I are mutually visible and the algorithm
terminates. 

4. Otherwise, I is an interior point of the edge
in outer polygon. Select P to be one of the
vertices  that  has  highest  x value.  If  both
edge  vertices  have  same  x value,  then
choose vertex that has lowest y value.

5. Test  the  reflex vertices  of  the  outer
polygon,  excluding  P if  it  happens  to  be
reflex,  that  are  on  the  right  side  of  the
vertex  M,  to  see  if  they  are  within  the
triangle formed by {M,  I,  P}.  If all of them
are strictly outside the triangle, then M and
P are  mutually  visible  and  the  algorithm
terminates.

6. Otherwise,  select  one  reflex vertex  R
among  aforementioned  ones  that  lies
inside the triangle {M,  I,  P} that minimizes
the angle between {M, I} and {M, R}. If there

3 The choice of min/max and axis is arbitrary: instead of maximum X value,
it can be maximum Y, or minimum on either of the axes. For instance,
Wijeweera et al. [11] uses maximum Y, which is also valid: it just requires
changing all steps in this work analogously.
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are  multiple vertices  with  a  similar  angle
within certain threshold, then select vertex
that  is  closest  to  M.  Vertices  R and  M
would  be  mutually  visible  and  the
algorithm terminates.

   

Figure 5. a) Right-most vertex P on intersected edge is
directly visible and b) Right-most vertex P is not directly
visible, but there are three reflex vertices inside triangle
{M, I, P}, one of which (drawn in color) is determined to

be mutually visible with M.

The  aforementioned  approach  is  relatively
simple  to  implement  and  quite  efficient.  It
requires  n1 steps  calculating  intersections
with edges of the outer polygon and n2 steps
testing  reflex  vertices,  leading  to  an
amortized  time  complexity  of  O(n)  for  any
types  of  polygons  involved.  In  addition,  a
right-most vertex that was previously found
to determine the winding order can also be
reused for merging,  without the need of an
additional search.

3. HANDLING MULTIPLE HOLES

When a polygon has multiple holes, they can
be  merged  iteratively  one  at  a  time  using
aforementioned  approach,  choosing  inner
polygon  with  a  right-most  vertex  that  has
highest  x coordinate each time. In case two
or  more  inner  polygons  have  right-most
vertex with the same  x coordinate, then the
one is  chosen that  has  lowest  y coordinate
first.

This  iterative  approach  would  not  work,
however,  for many common situations such
as shown on Figure  6:  first,  a  polygon with
right-most vertex A is merged into the outer
polygon,  with  closest  visible  vertex
determined to  be  P as  shown on image (a).
This would split vertex  P into  P1 and  P2, and
vertex  A into  A1 and  A2;  second,  a  polygon

with right-most vertex  B is merged into the
outer polygon, the closest intersection point
will lie on both coincident edges {P1,   A1} and
{A2,  P2}.  If  an intersection on edge {A2,  P2}  is
chosen,  which  would  select  P2 as  closest
visible vertex, then the resulting connection
with produce a self-intersecting polygon. 

Furthermore,  as  it  can  be  seen  on  an
illustrative  image  Figure  6(b),  the  correct
closest intersection point should definitely lie
on  edge  {P1,   A1},  but  since  both  edges  are
coincident,  this  cannot  be  determined
numerically.  A  solution  to  this  problem
requires  detecting  coincident  edges  during
intersection  calculation,  which  should  be
trivial, as both edges would refer to the same
vertex  indices  in  the  polygon,  except  in
opposite  order.  If  an  intersection  with  a
second  coincident  edge  is  detected,  then  a
signed triangle area should be calculated the
hole’s right-most vertex and two vertices of
the edge4 and the preference should be given
to  the  edge,  that  has  the  sign  of  signed
triangle area matching the winding order of
the outer polygon. In other words, as in case
of Figure 6(b), point B must be located to the
right of  intersecting  edge,  in  which  case  it
would be {P1,  A1} (if one is standing directly at
point  P1 looking in the direction of point  A1);
accordingly, in case of edge {A2, P2}, the point
B will appear on left side.

Figure 6. A hole with right-most vertex B is merged into
outer polygon, which had previously hole with right-

most vertex A (a) and the same situation (b), where two
coincident edges are separated for illustrative purposes
and (c), where intersection happens directly at vertex P. 

However,  there is another situation, which
also requires attention:  if an intersection like
on Figure 6(c) would happen directly at vertex

4 This  signed triangle area is also used to calculate whether a particular
vertex is convex or reflex.
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P,  there would be  actually  four intersecting
edges: {T1,  P1}, {P1,  A1}, {A2, P2} and {P2, T2}. Two
of these edges would give point  P1  as visible
vertex, whereas other two would give point
P2. In other words, edges {P1,   A1} and {A2,  P2}
will  be  handled  according  to  the  strategy
described above, but the other two would still
result  in  an  ambiguous situation  that  could
potentially  produce  a  self-intersection.  A
solution  to  this  problem  is  to  detect  when
another  edge  has  intersection  point  within
certain  minimum  threshold  of  the  current
intersection  (in  other  words,  very  similar  x
coordinate),  then  choose  an  edge  that
minimizes  the  angle  between  an  edge  in
question and a line segment between right-
most  vertex  and  the  intersection  point.  In
case  of  current  situation,  this  would  give
preference to  coincident  edges  {P1,   A1}  and
{A2, P2}, which would be resolved according to
strategy  above  (which  should  have  higher
preference  priority  than  the  angle  test  as
both edges would produce the same angle). It
can  be  observed  on  Figure  6(c),  using  the
minimum interior angle criteria, edge {P,   T2}
will  always be the least preferred because it
will  always  have  interior  angle  higher  than
the  one  of  coincident  edges.  If  point  T1 is
moved  so  edge  {T1,  P}  will  have  smallest
interior  angle,  then  it  would  still  result  in
proper  duplicate  vertex  P (P1 in  previous
image)  to  be  selected  as  mutually  visible
vertex. 

4. RESULTS AND DISCUSSION

In this  work,  both of  the approaches have
been implemented in C++ and integrated into
a commercial framework for development of
industrial CAD applications. The triangulation
with  holes  provided  by  both  of  the
approaches  after  testing  with  existing  data
sets seems to be very robust: as long as inner
and  outer  polygons  do  not  intersect  each
other  and/or  themselves,  the  techniques
succeed with an accurate triangulation, even
when  working  exclusively  with  32-bit
floating-point  data  types.  The  solutions
proposed in this work were developed during

the debug process of the initially prototyped
technique,  which  was  failing  for  many  test
cases. However, with the proposed solutions,
the  technique  satisfies  all  the  requirements
for  production  use  in  industrial
environments.  As the number of data nodes
can  be  known  based  on  the  number  of
vertices and number of polygons, the working
memory  can  be  pre-allocated  and  then  re-
used  for  all  consecutive  invocations,  which
rules  out  any  potential  memory
fragmentation issues, so the final application
can  be  left  running  for  an  indeterminate
amount of time without the need of restart.
Some of the triangulation results are shown
below.

  

 
Figure 7. Chinese letter “Yǎn” and a rectangle with many

randomly placed rectangular holes triangulated using
high-performance (dark gray) and quality approaches

(beige). . 

As it can be seen on the above Figure 7, not
all  situations  benefit  from  additional
performance costs involved with the  quality
approach.  When  very  simple  polygons  are
used such as triangles or rectangles and the
techniques do not produce any new vertices,
there are too few existing vertices to choose
from,  so  the  resulting  triangulation  will
produce  sharp  triangles  no  matter  what
approach is used. Therefore, while a Japanese
letter  “Chi”  from  Figure  3  contains  smooth
curves and benefits from quality approach, a
Chinese  letter  “Yǎn”  from  above  image  has
mostly  flat  contours  and  results  in  a
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satisfactory  triangulation  even  with  high-
performance approach.

 

 
Figure 8. A rectangle with two different types of holes
triangulated using high-performance (dark gray) and

quality approaches (beige).

A spatial orientation of the rectangles does
not seem to affect the situation as it can be
seen  on  the  above  Figure  8  on  last  two
images.  However,  as  number  of  vertices
increase,  the  quality approach  starts  to
produce much better triangulation results as
it can be seen on the first two images from
the aforementioned figure.

Table 1. Performance benchmarks between high-
performance and quality techniques from four different

data sets.
Variant Polygons Vertices Triangles Speed

(triangles/sec)
High-perf 2 16 16 24,242,424

Quality 11,034,482
High-perf 70 1778 1692 14,461,538

Quality 4,327,365
High-perf 604 11344 10721 6,742,767

Quality 3,089,625
High-perf

106 6724 6932
110,912

Quality 41,633

A  couple  of  sample  performance
benchmarks  between  two  variants  used  in
this  work  were  performed,  involving  four
different data sets, to give an idea of expected
throughput.  The  application  was  compiled
using GNU GCC compiler  version 11.2  using
optimization  level  3  and  executed  on  a
machine with AMD Ryzen 3950X processor at
stock  speeds,  with  128Gb  of  DDR4  RAM
running at  3600 Mhz.  The tests  were done

using only a single core. A first data set was a
simple letter “A” from Segue UI font. A second
data set was a portion of “Lorem ipsum” text.
A third data set was a big portion of text from
Japanese version of “Lorem ipsum” text and a
fourth data  set  used a rectangle with many
high-quality  circles  inside  similar  to  those
visible on  Error: no se encontró el origen de
la  referencia.  As  it  can  be  seen  from  the
results  shown on Table 1,  high-performance
variant for the most common polygon shapes
produces  a  whooping  several  millions  of
triangles per second.  As for the fourth data
set, it is unique because more than 99% of its
vertices are reflex (all except for the 4 points
at  rectangle’s  corners),  which  results  in  a
perfect  worst-case  scenario  for  both
algorithm variants,  which due to their O(n2)
worst-case  time complexity  struggle  in  this
specific scenario.

The  following  images  are  taken  as
screenshots from an actual CAD application,
which  uses  the  technique  to  produce  3D
meshes using an extrusion technique: once a
triangular  mesh  has  been  produced,  any
unused  vertices  that  were  identified  as
duplicate  or  collinear,  the  nodes  of  which
were initially removed, are excluded from the
polygons.  Following  this,  side  triangles  are
generated by iterating through the polygons
and calculating the appropriate normals.  An
angle between two consecutive edges is used
to determine if vertex normal can be re-used
between  two  consecutive  rectangular
sections consisting of two triangles and if not,
a triangle normal is used for “flat” sides.

Figure 9. A screenshot of the proposed solution used in a
real CAD application, which includes a rectangle with
many circular holes as well as 3D text extruded from a

triangulated mesh.
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The resulting image that can be seen on the
Figure  9  using  either  of  the  techniques
proposed  in  this  work  is  visually
indistinguishable, even when a color gradient
is produced by using different vertex colors
calculated according to their spatial position,
when rendered on GPU.  However,  this  may
not  always  be  the  case,  for  instance,  when
performing  a  software  rasterization  using
limited  precision  arithmetic  or  doing  per-
vertex lighting. 

Figure 10. A screenshot of the proposed solution used in
a real CAD application, which shows a phrase in Japanese

language rendered as a 3D text model, generated by
using extrusion from a triangulated mesh.

Finally, as it can be seen on the above Figure
10, non-trivial character glyphs such as those
from Japanese language, containing multiple
holes,  can  be  triangulated  accurately,
producing a high-quality visualization of the
resulting 3D text. 

5. CONCLUSION AND FUTURE WORK

It  is  common  in  the  area  of  industrial
applications, for visual real-time software to
work with data models that can be described
using  polygonal  shapes.  However,  many
algorithms that run on GPU expect the data
to be provided in form of triangles. Therefore,
the  polygons  need  to  be  converted  into
triangles using a process called triangulation.
Many  existing  solutions  exist  that  enable
polygon  triangulation:  simpler  ones  cannot
handle  holes  at  all,  while  most  modern
solutions  require  advanced  data  structures,
requiring  significant  implementation  and
debugging  effort,  which  increases
development costs. 

In  this  work,  an alternative solution  based
and improved upon an Ear Clipping algorithm
is  proposed,  with  two  variations  of  the
technique  that  can  meet  different
requirements based on speed and quality.  It
supports complex shapes defined in form of
an  outer  polygon  and  one  or  more  inner
polygons  that  describe  its  holes,  assuming
that  none  of  the  polygons  intersect  each
other or themselves.  The proposed solution
supports any number of holes in polygon and,
as  it  has  been  shown  in  the  experiments,
produces  accurate  results  even  when
implemented  exclusively  using  32-bit
floating-point arithmetic.

The proposed solution has been integrated
into  an  existing  commercial  framework  for
development  of  industrial  applications  with
3D visual content. This work includes images
from a  real  CAD application  that  uses  both
variations  of  the  proposed  techniques  to
produce  an  actual  3D  meshes  that  can  be
rendered directly on the GPU.

Future work involves further improvements
in the proposed solution to reduce number of
arithmetic operations and increase real-time
performance.  This  is  especially  important
when the polygon to be triangulated has large
number  of  reflex vertices,  triggering  worst-
case scenario with time complexity of O(n2).
One area of interest for further investigation
is to leverage trapezoidal decomposition such
as  described  by  Seidel  [17] for  the
aforementioned  use-cases,  which
significantly  improves  time  complexity  and
could  potentially  increase  the  real-time
performance significantly.
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