
 Programación Matemática y Software (2023) 15(1): 45-56. ISSN: 2007-3283

A real-time scheduling framework on distributed
mobile environments

Un framework de planificación en tiempo real en entornos móviles
distribuidos

Adriana Hernández Beristain1 , Mariano Larios-Gómez1* , Mario Anzures García1 ,
Franco Rojas-López2 y Erika A. Martínez-Miron1

1 Facultad de Ciencias de la Computación
Benemérita Universidad Autónoma de Puebla-México

2Universidad Politécnica Metropolitana de Puebla
*mariano.larios@correo.buap.m x

PALABRAS
CLAVE:

Tecnología
Educativa,
Sistemas de
Tiempo Real,
Ambientes
Distribuidos,
Sistema
Embebido,
Programación
de Tareas

RESUMEN

A lo largo de los años, un modelo centralizado se ha utilizado ampliamente en todo tipo de
aplicaciones informáticas, educativas y de nuevas tecnologías. Esta estructura de aplicación de
sistema móvil distribuido divide tareas o cargas de trabajo entre el proveedor y el servicio
solicitante. Este trabajo describe la implementación de una interfaz gráfica de usuario,
denominada JPeer, para un software embebido; esto muestra el uso de una red P2P que permite a
una supercomputadora la asignación de sus recursos de manera óptima entre los diferentes nodos
conectados a ella. Los pares en este proyecto se representan como dispositivos móviles y con el
uso de JNI (interfaz nativa de Java), con esto es posible comunicar pares creados en Java con pares
creados en C++, en consecuencia, el paso de mensajes sería posible entre diferentes
programaciones. lenguajes y sistemas operativos. Aplicamos varias redes P2P con múltiples pares
en un nodo de LNS (laboratorio de supercomputación) en el sureste de México. La comprensión de
algoritmos de sistemas distribuidos y de tiempo real puede representar una dificultad debido a la
abstracción y dificultad de aprendizaje. Por su parte, la implementación del framework representa
un entorno de sistema distribuido móvil, donde el usuario puede gestionar los nodos de forma
sencilla, fácil y transparente, así como visualizar cómo cada nodo ejecuta sus procesos, se
convierte en una herramienta muy útil y didáctica. Por otro lado, destacamos la necesidad de
adaptar lenguajes con características nativas y aprovechar ambas partes en entornos educativos y
tecnológicos.

KEYWORDS:

Educational
Technology,
Real-Time
Systems,
Distributed
environments,
Embedded
System,
Scheduling
Tasks

ABSTRACT

Throughout the years, a centralized model has been widely used in all sorts of regarding computer
science, educational and new technology applications, this distributed mobile system application
structure partitions task or workloads between the provider and requester service. This work
describes the implementation of a user graphical interface, named JPeer, for an embedded
software; this shows the use of a P2P network that allows a supercomputer the allocation of its
resources optimally among the different nodes connected to it. The peers in this project are
represented as mobile devices and with the use of JNI (Java Native interface), with this it is possible
to communicate peers created in Java with peers created in C++, accordingly, message passing
would therefore be possible among different programming languages and operating systems. We
applied several P2P nets with multiple peers in a node of LNS (supercomputing laboratory) in
Southeast Mexico. The understanding of distributed and real time system algorithms can
represent a difficulty due to the abstraction and difficult learning. In the meantime, the framework
implementation represents a mobile distributed system environment, where the user can manage
the nodes in a simple, easy and transparent way, as well as visualize how each node executes its
processes, becomes a very useful and didactic tool. On the other hand, we highlight the need to
adapt languages with native characteristics and take advantage of both parts on educational and
technological environments.

• Recibido: 23 de julio 2021 • Aceptado: 10 de abril 2022 • Publicado en línea: 28 de febrero 2023

ProgMat,2023,15,1; https://progmat.uaem.mx/progmat Copyright:© 2023 por los autores

DOI: 10.30973/progmat/2023.15.1/ 6 Creative Commons Atribución 4.0 CC-BY

https://progmat.uaem.mx/progmat
https://doi.org/10.30973/progmat/2023.15.1/6
mailto:mariano.larios@correo.buap.mx
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-0489-2590
https://orcid.org/0000-0002-2089-0608
https://orcid.org/0000-0001-6138-3226
https://orcid.org/0000-0002-2907-1334
https://orcid.org/0000-0002-4388-1624

 Programación Matemática y Software (2023) 15(1): 45-56. ISSN: 2007-3283

1. INTRODUCTION

Real-time and distributed systems are
included and used in the latest generation of
aircraft, spacecraft, robot control, wireless
mobile device (WMD) communication,
educational technology, etc. In this
environment. Real-time algorithms must be
capable of immediate response because they
have restrictions regarding the use of their
limited resources. It was proposed to
construct a routing algorithm to maintain and
construct a task scheduler, considering an
online compensation for the distribution of
loads, in addition to optimizing the route of
the messages, reducing the communication
time based on the routing problem [1],[2],[3].

In a mobile distributed system (MDS), we
have nodes (mobile devices) as a dynamical
system, so it is necessary to perform the
analysis of the metric to be used, which is the
minimization of the sum of the weights
measured at determined times, based at a
cost of sending a packet between two nodes.
The metric is important since in the WMD,
the difference of values is imparted on the
complemented system [4]. This mentioned
metric is based on [5], where it compares
different algorithms based on theorems of
process planners on uniprocessors and
multiprocessors by measuring the
computation time required for the
determination of a scheduler that satisfies
partial order and resource constraints.

In an MDS, one of the important elements is
the metric of time and resources in the
computation cost. Also, there is an important
element hybrid as a single entity with three
elements: sending node, receiving node,
bridge node or router node. It can be viewed
as a local state, depending on the
requirements and constraints to make the
communication. In an MDS, the nodes can
communicate with neighboring nodes by
means of an appropriate entity configuration,
in a transmission range from a sender to a
receiver in a L neighborhood. Communication
in this MDS configuration neighborhood

describes a dynamic topology, which makes it
difficult to establish and maintain a
communication path between the nodes
vi v→ j, considering that i ≠ j and vi, vj ϵ V,
where V is the set of nodes in a mobile
network, presumably remote because of the
unwillingness to communicate in each time.

Routing algorithms in an MDS environment
are based on message flooding, such as a
route search mechanism in an L
neighborhood, sending messages in
neighborhoods of nodes, using Ad Hoc
sustainable longevity routing (SLR) networks
[6], [7].

Peer-to-peer (P2P) paradigm is a classical
P2P network, whereas all participating
computers have equivalent capabilities and
responsibilities. The nodes can directly
exchange resources and services between
each other without the need for centralized
servers. They can collaborate to perform
tasks by aggregating the pool of resources
(e.g., storage, CPU cycles) available in the P2P
network.

This work describes the implementation of
a graphical interface, named JPeer, for an
embedded software; this shows the use of a
P2P network that allows to a supercomputer
the allocation of its resources optimally
among the different nodes connected to it.
Sometimes, the understanding of distributed
and real time system algorithms can
represent a difficulty due to the associated
abstraction. So, the implementation of JPeer
Framework to represent a mobile distributed
system environment, where the user can
manage the nodes in a simple, easy, and
transparent way, as well as visualize how each
node executes its processes, becomes a very
useful and didactic tool.

In sections tree, we describe the
implementation of JPeer to represent,
configure, and communicate the nodes with
different languages programming, as C++ and
Java, well as how the distributed algorithms

46

 Programación Matemática y Software (2023) 15(1): 45-56. ISSN: 2007-3283

are used to give access to the resources to
each node.

The Framework JPeer distributed nature
provide exciting opportunities for new
applications to be developed. P2P computing
framework proposed distinguishes itself from
traditional distributed computing in three
main aspects. First, the scalability of P2P
systems goes far beyond that of traditional
distributed systems. Since P2P systems are
able to scale to thousands of nodes, they can
harness the power of computers over the
Internet. Second, P2P, in its most
uncompromising definition, requires
everything to be completely decentralized.
Ideally, no centralized structures should exist
in P2P systems.

Also, the most important, P2P applications
often work in highly dynamic environments.
Specifically, in terms of network topology,
since P2P nodes can join and leave the system
anytime, P2P systems do not have a fixed
topology. Instead, their topology changes
according to nodes in the system.
Furthermore, the content and load of system
are distributed in real time according to the
actual demand and resource capability of
nodes.

P2P computing is a important one form of
distributed computing. It shares the set of
issues that distributed computing
researchers have been addressing over the
years (e.g., security, trust, anonymity, fault
tolerance, scalability, distributed query
processing and coordination). However, P2P
computing distinguishes itself from
traditional distributed computing in several
aspects. Some of the most important ones are
[8]:

• Symmetric role. Each participating node in
a P2P system typically acts both as a server
and as a client. In fact, each node installs a
single package that encompasses both
client and server code. As such, a node can
issue queries (like a client) and serve
requests (like a server).

• Scalability. Different from traditional
distributed systems, P2P systems can scale
to thousands of nodes. As a result, they can
harness the power of computers over the
Internet. To achieve this property, the P2P
protocols do not require all-to-all
communication or coordination.

• Heterogeneity. A P2P system can be
heterogeneous in terms of the hardware
capacity of the nodes may be a very slow
machine, and another may be a high-end
supercomputer.

• Distributed control. In its strictest
definition, P2P requires everything to be
completely decentralized. Ideally, no
centralized structures should exist in P2P
systems.

• Dynamism. P2P applications often work in
highly dynamic environments. The
topology of P2P systems may change very
fast due to joining of new nodes or leaving
of existing nodes. The content and load of
P2P systems typically change according to
the actual demand and resource capability
of nodes.

2. STATE OF THE ART

Currently, it has the need for
communication distributed applications
remotely via videoconferencing, such as
distance education and online business.
There are some examples based on P2P
architecture like a Framework for E-Learning
[9]. This paper describes the design and
development of a Peer-to-Peer Presentation
System that supports live video streaming of
lectures coupled with a shareable
whiteboard. The participant may resolve
doubts during an ongoing session of a
presentation using ask doubt feature. It is
disseminated to all other peers by preserving
the causality between ask doubt and its
resolution. A buffered approach was
employed for enhancing the performance of
the shareable whiteboard which may be used

47

 Programación Matemática y Software (2023) 15(1): 45-56. ISSN: 2007-3283

either in tandem with live streaming or in
standalone mode. The proposed P2P-PS
supported also by a P2P file sharing and
searching system with a few additional
features. The combined framework allows
creation of mash-up presentations with
annotations, comments, posts on video,
audio, and PDF files.

In [10], the authors describe the approach
to the problem of consensus and agreement:
The agreement between processes in a
distributed system is a fundamental
requirement for a wide range of applications.
Many forms of coordination require
processes to exchange information, which is
used to communication processes with
processes and reach a common
understanding, before taking specific actions
of the application. In [11], it is discussed the
application of the results for the problem of
consensus based on multi-agent systems,
where two algorithms based on the Laplacian
matrix of the network G graph are proposed
that achieves the consensus in a finite time
using Lyapunov functions. In this way, a
special distributed map is proposed for the
class of non-directed graphs.

These maps are used in [12], where the
author propose a comprehensive analysis and
design of co-operative strategies for
consensus, another contribution is the
introduction to the necessary and sufficient
conditions for two discontinuous distributed
algorithms that achieve minimum and
maximum knowledge in finite and asymptotic
time. As proposed in this research work, the
use of Ad Hoc networks is proposed, for this
reason we contemplate these works
mentioned above, to validate their results in
networks with intercommunication
topologies and dynamic changes. Another
work with novel approaches to consensus
algorithms is [13], in this paper was re-
addressed the concomitant problem for
distributed non-linear multi-agent systems
and apply a controller to directed and non-
directed graphs. In addition, this control
allows you to work on fixed and changeable

topologies. The application of consensuses
and agreements in multi-agents in
distributed environments and design of
observers can be found in [14], this work is
based on L neighborhood rules for the
coordination of multi-agents. In the search
for an active leader, we describe the agent
dynamics to be followed with interactive
control inputs.

An example of MDS applications can be
found in [15], [16], these papers focus on the
problem of determining an optimal route,
through a route discovery algorithm.

Another similar framework is PeerSim [17].
This is an extremely scalable simulation
environment that supports dynamic scenarios
such as churn and other failure models.
Protocols need to be specifically
implemented for the PeerSim Java API, but
with a reasonable effort they can be evolved
into a real implementation. Testing in
specified parameter-spaces is supported as
well. This are executed before the simulation,
while controls are executed during the
simulation. They may modify or monitor
every component. For example, they may add
new nodes or destroy existing ones; or they
may act at the level of protocols providing
them with external input or modifying their
parameters. Controls can also be used to
passively monitor the simulation. PeerSim
reads the configuration file and loads the
specified classes at run-time. Based on the
configuration file, either the cycle-driven or
the event-driven simulation engines are
loaded. The former, to allow for scalability,
uses some simplifying assumptions such as
ignoring the details of the transport layer in
the communication protocol stack. The latter
is less efficient but more realistic. Among
other things, it supports transport layer
simulation as well. Cycle-based protocols can
also be run by the event-based engine, but
not upside down.

In [18], the authors developed embedded
software libraries in a community cluster for
the use of MPI with a well-defined specific

48

 Programación Matemática y Software (2023) 15(1): 45-56. ISSN: 2007-3283

interface available on many platforms and in
several programming languages. With the
need to use languages oriented to objects,
such as the realization of multilanguages.
Internally, they performed the JVM Java
object translation through the native JNI
interface. Once in the native memory space,
mpiJava used a native implementation of MPI.
Unfortunately, the JNI performs poorly
because most of the data transferred between
the virtual machine and the native space
must be copied. Essentially, the mpiJava
implementation is a Java wrapper for a native
implementation of MPI. We avoided the JNI
overhead in our experiments by tightly
integrating mpiJava with a version of
Hyperion. This integration also ensured that
our implementations of the two Java cluster
approaches used a common method for
executing Java byte codenamely, Hyperions
technique of translating bytecode to C and
then C++ to native code. Although knowing
that is true using low level languages such as
C and C++ in expert areas as high-level
parallelism as shown in [19], where they
explain it satisfied with directive
parallelization tools (based on the OpenMP
standard, MPI, PVM, etc.). They explain in
their work which are supported by modern
compilers, as well as with effective parallel
libraries for many application domains. This,
however, cannot fully replace high-level
means for parallel and concurrent
programming at the language and STL levels.
Even knowing that there are suitable
languages for the area of parallelism,
concurrency among others, it’s also
necessary to adapt languages with native
characteristics and take advantage of both
advantages.

In [20], they showed difference in
performance and uncover the cause. This
could provide help to Android application
developers for building Android applications
efficiently. The Java Native Interface (JNI) is
used to call native applications and libraries
that are written using C/C++ in Java code.
They made a Mibench code native shared
library by using NDK-build. Fig. 1 shows the

structure of the application execution by
using JNI of Android NDK. The result of this
experiment shows that Android applications
that use the native shared library through the
JNI of the Android NDK is faster compared to
those applications which are compiled by
using the native cross-compiler in five of six
cases. It seems that the difference in libraries
used also makes a difference in the
performance. Android NDK uses the bionic
C/C++ library, but the native cross-compiler
uses the GNU C library. The bionic C/C++
library is developed by Google for Android
embedded systems. It is generally small and
fast as it is optimized for embedded
environments.

In [21], they tested 5 different methods: JNI
Communication Delay, Integer Calculation,
Floating-Point Calculation, a memory access
algorithm, and a heap memory allocation
algorithm. As a result, Lee [22] also presented
that the Android applications that use the
native shared library are faster compared to
the Android applications using only Java
language in the Android virtual machine. They
experimented with 14 different algorithms on
a real Android mobile phone [23]. According
to the results, the overall performance of an
Android application using the JNI of Android
is faster than the Dalvik Java code.

Fig. 1. Representation of two nodes with a single
connection.

Programming methodology in [24] is used at
native level using the implementation of an
interface allowing to represent that any
mobile distributed system was achieved.

49

 Programación Matemática y Software (2023) 15(1): 45-56. ISSN: 2007-3283

Nevertheless, a visual environment that
facilitates this tracking would be very helpful.
This work describes the design and
implementation of a didactic graphical
interface for a distributed embedded
software, which lets the visual representation
of a process scheduling algorithm in a virtual
mobile distributed system. So far, just one
process can be executed by each node, but it
is planned to modify the functions to allow
the generation of more processes. Also, the
use of other process scheduling algorithms is
considered.

3. ANALYSIS FOR THE RESOURCE AND
SERVICES

Embedded systems [25] have traditionally
been differentiated from desktop systems on
the basis of functionality. Another
consideration is the size of the complete Java
platform. Many people believe that support of
a Java VM is all you need to run Java
applications. However, to compute the total
size of the Java platform correctly, you must
add the size of the Java VM, Java API package,
Java application, and associated native-code
libraries. Current Java API packages tend to
be large, so the specific API selected for your
device will significantly impact its size. Added
components can also affect platform size. The
functionalities identified were: a) the node
network creation (being the nodes the mobile
devices), and b) the obtaining of the required
information to implement a process
scheduler under a virtual environment. The
following subsections describe how these
functionalities were achieved.

In [1], [2], to represent a virtual mobile
device some considerations were taken into
account and to insert as many mobile devices
as possible. The first was achieved by using a
simple rectangle to represent a node, straight
lines for its connections (see Fig. 1) and the
use of the right click of the mouse for editing
options. It is important to mention that on
the back-end of the software, a single
adjacency list with four elements (transmitter

node, receiver node, bridge node and router
node), was used to store the connections. The
latter was accomplished combining the date
and time and generating a unique identifier
for each node.

In an MDS, the nodes can communicate
with neighbors by means of a suitable
configuration, which allows us a multicast, in
a transmission range from transmitter to
receiver within a neighborhood L, established
in [27]. We use the formalism in [16],
communication in this MDS configuration
neighborhood describes a dynamic topology,
which makes it difficult to establish and
maintain a communication path between the
nodes vi→vj, taking into account that i≠j and
vi, vj ϵ V, where V is the set of nodes or peers
in a mobile network, presumably remote
because of the unwillingness to communicate
in a given time.

Assuming that the solution of using a
related cyclic graph, reduces these errors in
planning and communication among peers,
Eq. (1), as was proposed in [16].

G=⟨P ,R , J , A ⟩ , pi∈P , rk∈R and jl∈J (1)

where:

G: is a connected acyclic graph.
A: is the edge between peers.
P: processes.
R: resources.
J: task.

It should be noted that 92% of the peers
achieved their deadline established a priori.
From 980 peers, a constant with respect to
time is observed. The interpretation of this
statement indicates that the scheduler has a
brief improvement with respect to the
deadline of the peer´s processes. After a
processing time, 98.9% of processes reaching
out their deadline are achieved. The
remaining 8% achieved a considerable
improvement in the range of 1.8s to 2
seconds, and it keeps up with this behavior.

50

 Programación Matemática y Software (2023) 15(1): 45-56. ISSN: 2007-3283

Finally, improvements are expected to this
proposed algorithm increasing the number of
processes and resources. In an MDS, there
are nodes as a dynamic system, therefore, it
is necessary to perform the analysis of the
metric to be used, which is the minimization
of the sum of the weighted weight in
determined times, based on a cost of send a
packet between two nodes, as expressed in
equation (2). This metric is important since in
the MDS the difference of values is applied to
the real-time systems as shown in [5], [8]. A
metric is also proposed, to compare different
algorithms based on theorems of process
scheduling on uni-processors and
multiprocessors, by measuring the
computation time required for the
determination of a planner that satisfies the
partial order and resource constraints.

M c=
1
n∑i=1

n−1

N pi(t c)−N pi+1(t c)
(2)

t c=max (f i)−min⁡(ai) (3)

where:

Mc: proposed metric.
Npi(tc): node weighting i.
tc: total completion time.
fi: end time of tasks.
ai: start time of the task.

Observe that the total completion time as
defined in Eq. (3) considers the time of the
task that took longer to finish and the time of
the task that started first. Expanding the
metric expression, many of the terms cancel
out in the telescopic sum (4), and we have:

M c=
1
n
(N p i(t c)−Np 2(t c)+N p2 (tc)−N p3 (tc)+…+N pn−1(t c)−Np n(t c))

(4)

The select analysis of task scheduling
metric It is taken as a fundamental basis how
the development of the core of the system.
This takes part of a metric of total time of
tasks completion and the metric based on

time sum weighted. They are important of the
individual characteristics of time for each
deadline and by taking the relevance of
having different types of tasks taught in the
proposed system.

Fig. 2. Initial performance of the algorithm with 100.

Fig. 2 shows the start of the executions of
the tasks from 1 to 100 processes. The first
processes enter the deadline in good
conditions.

The executions were performed on a node
assigned by the LNS-BUAP supercomputer
lab [28], using instances of the reduced
operating system. The kernel has basic
resources of an operating system, being ideal
for the execution of the algorithms of
planning. These instances were carried out
with a tool for the administration of the cloud
of computation, several tests were performed
with at least 1,000 instances of peers and a
handling of 1,000 processes.

(a) (b)

Fig. 3. (a) Peers in Java. (b) Peers in C++.

In Fig. 3, we show the P2P network. In a)
there are more than 100 peers in Java under
the JVM. In b) there are peers in C ++ with
graphical environment of Java, which implies
the use of JNI, so the interface between the

51

 Programación Matemática y Software (2023) 15(1): 45-56. ISSN: 2007-3283

language at low level with the interface of the
graphic environment (Listing 1.1).

Listing 1.1. RTPeerinC.jni

#include <jni.h>
#include <stdio.h>
#include <string.h>
#include <time.h>
JNIEXPORT void JNICALL Java_DelayTime
 (JNIEnv * env, jobject jobj,jstring i){
 int ID;
 time_t rawtime;
 struct tm *timeinfo;
 time (&rawtime);
 timeinfo=localtime(&rawtime);
 const char *str=(*env)
 ->GetStringUTFChars(env, i, 0);
 printf("Dispositivo:\%d Group:
 Processes:\%s Date:\%s\n",ID++,str,
 asctime(timeinfo));
}

In Fig. 4, we can see the saturation of peers
under tow different programming languages
for the evaluation of frameworks with respect
to the limits of resources and communication
services through messages. The peers in
green are communicated with the peers in
blue with the help of JNI. This native interface
was very useful to obtain the real data that
the peers throw in C ++ and be able to
communicate with the peers under Java, as
well as being visible in a user graphical
environment with the JVM.

Fig. 4. Communication between peers in C ++ and Java.

4. RESULT

For the creation and manipulation of each
peer on the JPeer, a contextual control menu
can be used to display a set of possible
actions: a) New Peer C++; b) New Peer Java; c)
Individual elimination; d) Overall elimination;
and e) Inter-communication JNI. Fig. 3 shows

Java Native Interface (JNI) function, that
allows the native calls for the communication
between the embedded software and the
underneath operative system.

The main functionality of JPeer Framework
is the communication between the virtual
mobile devices through an information flow
between two layers, the graphic layer and the
low-level layer. For this reason, a
multiplatform with JNI and the
supercomputing was implemented. In JPeer,
the information exchanged between the
nodes includes the identifier, the execution
time (start and final) and the quantum
assigned by the system to the process. The
code shown in ((Listing 1.2)) correspond to the
function that requests for time in the java
native interface and assign the respective
peer to the node.

Listing 1.2. PeerJavaandC.jni

#include<jni.h>
#include<stdio.h>
#include "MainWindow.h"
#include<String.h>
//Implementation of native method
//JNI class
JNIEXPORT jstring JNICALL

Java_MainWindow_PeerInC
(JNIEnv *env,jobject thisObj){

 char msg[60]="C++";
 jstring result=(*)NewStringUTF(msg);

return result;
}

For representing the JPeer Framework, a
driver capable of using real resources was
implemented as a DLL file. When the JNI
option is selected in the contextual menu, the
driver requests the ID processes of the
connected nodes from the supercomputer
working on real time. Then a command line
terminal is used to verify that the exchange of
messages between the connected nodes was
correct. Because a personal computer did not
have enough resources for testing the
creation a lot of mobile devices, there was the
need to use a supercomputer, whose
characteristics are described next: The
Cuetlaxcoapan supercomputer of the LNS
[11], is composed of a standard calculation
cluster with Intel Xeon processors and a
cluster with Intel Xeon Phi Knights Landing

52

 Programación Matemática y Software (2023) 15(1): 45-56. ISSN: 2007-3283

processors with 228 Thin calculation nodes
(5472 total cores). Each node contains 2 Intel
Xeon E5-2680 v3 processors (Haswell) at 2.5
GHz, 12 cores per processor / 24 total cores,
128 GB of DDR4 memory at 2133 MHz, 2
Gigabit Ethernet network interfaces and an
InfiniBand FDR 56 Gbps net-work interface.
Storage of 1.2 PB of total space for disk
storage. Finally, there is a Gigabit Ethernet
network for managing the hardware of the
supercomputer and the provisioning of
software to the nodes.

The implementation of a user interface that
allows to represent any paradigm of
distributed system was achieved. The
networks P2P on between them, and the
information in-side each node correspond to
the resources requested to the system. The
interface is centered in graphs edges and
relations between the networks.

Fig. 5. The balance of the load of the cluster.

In Fig. 5, we show the balance of the load of
the cluster in the time the use of the same
time while the number of companions grows
with 100 pairs the use of the computer of 288
per second, while with 10000 it is of 347 of 6
to 7 seconds. The start and launch time are
approximately 13.4 seconds.

5. CONCLUSION AND DISCUSSION

The graphical user interface implemented
in this project allows us to visually represent
one or more P2P networks in a mobile
distributed system, to show an easy and

transparent interaction between various
nodes. A metric was used to measure the
communication time between peers in one
neighborhood L. The metric is justified by the
response time in its deadlines of each process
for low-level communication with the native
interface JNI. For this reason, it is possible to
visualize how a multi-languages P2P network
is executed through the exchange of
information between the nodes by means of
labels inserted in each node.

Until now, each node can execute a single
process, but it is planned to modify the
functions to allow the generation of more
peers. Knowing that there are adequate
languages for the area of parallelism,
concurrency among others, it is also
necessary to adapt languages with native
characteristics and take advantage of their
important characteristics. This project
proposes a framework for educational use, as
well as scientific and technological use.

ACKNOWLEDGMENT

The authors thankfully acknowledge
computer resources, technical advice and
support provided by National
Supercomputing Laboratory of Southeast
Mexico (LNS), a member of the CONACYT
national laboratories, with project No.
201901014C. Also too, Laboratory of
Technology and innovation of FCC-BUAP..

REFERENCES

[1] Scott Corson, M., J. Macker, J. and Batsell, S. G.
Architectural considerations for mobile mesh
networking. Military Communications Conference,
1996. MILCOM'96, Conference Proceedings, IEEE. Vol.
1. IEEE, 1996.
ht tps://doi.org/10.1109/MILCOM.1996.568618

[2] Park, V.D. and Scott Corson, M. A highly adaptive
distributed routing algorithm for mobile wireless
networks. INFOCOM'97. Sixteenth Annual Joint
Conference of the IEEE Computer and
Communications Societies. Driving the Information
Revolution., Proceedings IEEE. Vol. 3. IEEE, 1997.
https://doi.org/10.1109/INFCOM.1997.631180

53

https://doi.org/10.1109/INFCOM.1997.631180
https://doi.org/10.1109/MILCOM.1996.568618

 Programación Matemática y Software (2023) 15(1): 45-56. ISSN: 2007-3283

[3] Dinh, H.T., et al. A survey of mobile cloud computing:
architecture, applications, and approaches. Wireless
communications and mobile computing 13.18 (2013):
1587-1611. https://doi.org/10.1002/wcm.1203

[4] Stankovic, J.A., et al. Implications of classical
scheduling results for real-time systems. Computer
28.6 (1995): 16-25. https://doi.org/10.1109/2.386982

[5] Bini, E. and Buttazzo, G. C. Measuring the
performance of schedulability tests. Real-Time
Systems 30.1-2 (2005): 129-154.
https://doi.org/10.1007/s11241-005-0507-9

[6] Cigdem, S. and Kravets, R. Bypass routing: An on-
deman local recovery protocol for Ad Hoc netwoks.
Ad Hoc Networks 4 (3), may, 2006 pp. 380-397
Elsevier Science Publishers B. V. Amsterdam, The
Netherlands.
https://doi.org/10.1016/j.adhoc.2004.10.004

[7] Ramasubramanian, V., Haas, Z.J. and Sirer, E.G.
SHARP: A hybrid adaptive routing protocol for
mobile ad hoc networks. Proceedings of the 4th ACM
international symposium on Mobile ad hoc
networking computing. ACM, 2003.
https://doi.org/10.1145/778415.778450

[8] Vu, Q.H., Lupu, M. and Ooi, B. Ch. Peer-to-peer
computing: Principles and applications. Springer
Science Business Media, 2009.
https://doi.org/10.1007/978-3-642-03514-2

[9] Hatcher, P. et al. Cluster computting with Java.
Computing in science engineering 7.2 (2005): 34-39.
https://doi.org/10.1109/MCSE.2005.28

[10] Bhagatkar, N., Dolas. K., and Ghosh, R.K. An
Integrated P2P Framework for E-Learning. arXiv
preprint arXiv:1903.05474 (2019).
https://doi.org/10.1007/s12083-020-00919-0

[11] Cheng, A.M.K. Real-time systems: scheduling,
analysis, and verification. John Wiley & Sons, 2003.

[12] Hong, Y., Chen, G. and Bushnell, L. Distributed
observers design for leader-following control of
multi-agent networks. Automatica 44.3 (2008): 846-
850.
https://doi.org/10.1016/j.automatica.2007.07.004

[13] Esquivel-Flores, O., Benitez-Pérez, H. and Ortega-
Arjona, J. Issues on communication network control
system based upon scheduling strategy using
numerical simulations. Numerical Simulation-From
Theory to Industry. IntechOpen, 2012.
https://doi.org/10.5772/48578

[14] Cortéz J. Distributed algorithms for reaching
consensus on general functions. Automatica 44.3
(2008): 726-737.

https://doi.org/10.1016/j.automatica.2007.07.022

[15] Esquivel-Flores, O., and Benítez-Pérez, H. Dynamic
Reconfiguration of Real-Time Distributed Systems
Based on Agents. Revista Iberoamericana de Automca
e Informca Industrial RIAI. Vol.9, Issue 3, July-
September 2012, pp. 300-313.

[16] Castillo, O. and Benítez-Pérez, H. A Novel Technique
to Enlarge the Maximum Allowable Delay Bound in
Sampled-Data Systems, Congreso Nacional de
Control Automco 2017 Monterrey, Nuevo León,
Octubre 4-6, 2017.

[17] Larios-Gómez, M., et al. A Scheduling Algorithm for
a Platform in Real Time. International Conference on
Supercomputing in Mexico. Springer, Cham, 2018.
https://doi.org/10.1007/978-3-030-10448-1_1

[18] Montresor, A. and Jelasity, M. PeerSim: A scalable
P2P simulator. 2009 IEEE Ninth International
Conference on Peer-to-Peer Computing. IEEE, 2009.
https://doi.org/10.1109/P2P.2009.5284506

[19] Vyukova, N. I., Galatenko, V.A. and Samborskii, S.V.
Support for Parallel and Concurrent Programming in
C++. Programming and Computer Software 44.1
(2018): 35-42.
https://doi.org/10.1134/S0361768818010073

[20] Kim, Y.-J., et al. Benchmarking Java application using
JNI and native C application on Android. 2012 12th
International Conference on Control, Automation and
Systems. IEEE, 2012.

[21] Lee, S. and Jeon, J. Evaluating Performance of
Android Platform Using Native C for Embedded
Systems, 2010 International Conference on Control
Automation and Systems, pp. 1160-1163, 2010.
https://doi.org/10.1109/ICCAS.2010.5669738

[22] Lee, J.K., and Lee, J.Y. Android programming
techniques for improving performance. 2011 3rd
International Conference on Awareness Science and
Technology (iCAST). IEEE, 2011.
https://doi.org/10.1109/ICAwST.2011.6163105

[23] Lin, C.M., Lin, J.H., Dow, C.R. and Wen, C.M.
Benchmark Dalvik and Native Code for Android
System, 2011 Second International Conference on
Innovations in Bio-inspired Computing and
Application, pp. 320-323, 2011.
https://doi.org/10.1109/IBICA.2011.85

[24] Larios Gómez, M., Beristain Hernández, A. et al.
JScheduling: A Graphical Interface for Applying a
Process Scheduling Algorithm. Research in
Computing Science 145 (2017): 119-125.

[25] Mulchandani, D. Java for embedded systems. IEEE
Internet Computing 3 (1998): 30-39.
https://doi.org/10.1109/4236.683797

54

https://doi.org/10.1007/s12083-020-00919-0
https://doi.org/10.1109/4236.683797
https://doi.org/10.1109/IBICA.2011.85
https://doi.org/10.1109/ICAwST.2011.6163105
https://doi.org/10.1109/ICCAS.2010.5669738
https://doi.org/10.1134/S0361768818010073
https://doi.org/10.1109/P2P.2009.5284506
https://doi.org/10.1007/978-3-030-10448-1_1
https://doi.org/10.1016/j.automatica.2007.07.022
https://doi.org/10.5772/48578
https://doi.org/10.1016/j.automatica.2007.07.004
https://doi.org/10.1109/MCSE.2005.28
https://doi.org/10.1007/978-3-642-03514-2
https://doi.org/10.1145/778415.778450
https://doi.org/10.1016/j.adhoc.2004.10.004
https://doi.org/10.1007/s11241-005-0507-9
https://doi.org/10.1109/2.386982
https://doi.org/10.1002/wcm.1203

 Programación Matemática y Software (2023) 15(1): 45-56. ISSN: 2007-3283

[26] Vlachou, A. et al. Peer-to-peer query processing
over multidimensional data. Springer Science
Business Media, 2012.
https://doi.org/10.1007/978-1-4614-2110-8

[27] Vu, Q.H., Lupu, M. and Ooi, B. Ch. Architecture of
peer-to-peer systems. Peer-to-Peer Computing.
Springer, Berlin, Heidelberg, 2010. 11-37.
https://doi.org/10.1007/978-3-642-03514-2_2

[28] LNS-BUAP. Homepage, http://lns.org.mx/?
q=content/proyectos-aceptados

ACERCA DE LOS AUTORES

Mariano Larios Gómez.
Originario de Puebla-
México. Profesor
investigador tiempo
completo en la
Benemérita Universidad
Autónoma de Puebla

(BUAP) con perfil PRODEP. Recibió su grado
de licenciatura y maestría en ciencias de la
computación en la facultad de ciencias de la
computación (BUAP) 1997-2001 y 2001-2003
respectivamente. Estudios de doctorado en
sistemas en Sistemas Inteligentes en la UATX
2019. Desde 2004 es profesor en la facultad
de ciencias de la computación (BUAP). Su
interés en la investigación incluye tópicos en
cómputo distribuido, blockchain, cómputo de
alto rendimiento, sistemas de tiempo real y
computo pervasivos. Actualmente colabora
en proyectos de investigación sobre
supercómputo en el laboratorio nacional del
suroeste LNS.

Adriana Hernández
Beristain. Realizó sus
estudios de Licenciatura en
el IT de Tehuacán (1994-
1999) en la carrera de Ing.
en Sistemas
Computacionales,

posteriormente realizó sus estudios de
maestría en la Facultad de Ciencias de la
Computación de la Benemérita Universidad
Autónoma (2001-2004) de Puebla. Sus

intereses sobre la investigación son sobre los
sistemas de Información y Comunicación,
Sistemas Distribuidos; Seguridad de redes y
VoIp. Ha participado en varios proyectos de
investigación, entre los que destaca: “Entorno
para la comunicación efectiva por
Telepresencia entre las dependencias de H.
Ayuntamiento de Puebla” en donde Desarrollo
un entorno de comunicación utilizando la
innovación tecnológica y la TelePresencia
basada en CISCO. Actualmente labora como
Profesor Investigador TC en la BUAP, imparte
cursos en el área de las redes de
computadoras y de certificación en CCNA de
CISCO, es coordinadora de la academia Cisco,
ha publicado varios artículos en revistas y
memorias en extenso.

Mario Anzures García.
Profesor Investigador
Titular en la Facultad de
Ciencias de la Computación
(FCC) de la Benemérita
Universidad Autónoma de
Puebla, México desde 1995.

Obtuvo el grado de Maestría y Doctorado en
Tecnologías de la Información y la
Comunicación en la Universidad de Granada,
España. Es miembro del Sistema Nacional de
Investigadores (SNI) en el área 1 de Ciencias
Físico Matemáticas y Ciencias Materiales del
CONACYT, del Padrón de Investigadores
VIEP-BUAP y del PRODEP. Ha sido
coordinador de la Ingeniería en Tecnologías
de la Información de la FCC desde 2012 hasta
2019. Él ha publicado más de 40 artículos en
conferencias y revistas nacionales e
internacionales en las líneas de investigación:
Modelado Arquitectónico y/o Ontológico
para el Desarrollo de Groupware,
Metodologías de Desarrollo de Software
basada en Patrones de Diseño y Tecnologías
de la Web Semántica e Inteligencia Artificial.
También es miembro de la Red
Latinoamericana en Tecnologías
Concurrentes, Distribuidas y Paralelas; y de la
Sociedad Mexicana de Inteligencia Artificial
(SMIA). Así como del Comité del Programa de
diferentes conferencias y revisor de varias
revistas nacionales e internacionales.

55

http://lns.org.mx/?q=content/proyectos-aceptados
http://lns.org.mx/?q=content/proyectos-aceptados
https://doi.org/10.1007/978-3-642-03514-2_2
https://doi.org/10.1007/978-1-4614-2110-8

 Programación Matemática y Software (2023) 15(1): 45-56. ISSN: 2007-3283

Actualmente, está trabajando en varios
proyectos de investigación.

Franco Rojas López.
Profesor de tiempo completo
en la universidad Politécnica
Metropolitana de Puebla.
Recibió el grado de maestro
en ciencias de la
computación en la

Benemérita Universidad Autónoma de Puebla,
posteriormente el grado de doctor en el
Centro de Investigación y de Estudios
Avanzados del Instituto Politécnico Nacional.
Sus áreas de interés son representación y
manejo de conocimiento, sistemas de
recomendación y chatbots.

Erica A. Martínez Mirón. Actualmente
Profesora Investigadora de Tiempo Completo
en la Facultad de Ciencias de la Computación
de la Benemérita Universidad Autónoma de
Puebla. Realizó sus estudios de Licenciatura
en la Benemérita Universidad Autónoma de
Puebla (MX). Obtuvo su maestría en el
Instituto de Investigación en Matemáticas
Aplicadas y Sistemas de la UNAM (MX) y el
grado de Doctora en la Universidad de Sussex
(GB) en el área de Ciencias de la
Computación. Sus líneas de investigación
versan sobre la Interacción Humano-
Computadora; en particular sobre el trabajo
colaborativo, el cómputo afectivo, así como la
definición de modelos de usuario y su
proceso de aprendizaje y evaluación en
ambientes interactivos educativos. Ha
participado en varios proyectos de
investigación, impartido diversos cursos
curriculares, de actualización y preparación a
nivel de licenciatura, maestría y doctorado y
ha publicado varios artículos en revistas
indexadas y memorias en extenso en el área
de inteligencia artificial y educación.

56

	1. INTRODUCTION
	2. STATE OF THE ART
	3. ANALYSIS FOR THE RESOURCE AND SERVICES
	4. RESULT
	5. CONCLUSION AND DISCUSSION
	ACKNOWLEDGMENT
	REFERENCES

