
Progmat,2018,10,1; http://www.progmat.uaem.mx   http://dx.doi.org/10.30973/progmat/2018.10.1/3 

Programación Matemática y Software (2018) 10(1): 17-23. ISSN: 2007-3283 

Genetic algorithm for black and white coloring problem on graphs 

Algoritmo genético para el problema de coloración blanco y negro en gráficas 

Luis Eduardo Urbán Rivero1 , Javier Ramírez Rodríguez2 , Rafael López Bracho2

lurbanrivero@gmail.com, jararo@azc.uam.mx, rlb@azc.uam.mx 
1 Posgrado en optimización UAM Azcapotzalco. 

2 Departamento de Sistemas, UAM Azcapotzalco. 

Av. San Pablo 180 Col. Reynosa-Tamaulipas Delegación Azcapotzalco C.P. 02200, Ciudad de México. 

KEYWORDS: ABSTRACT 

Anticoloring, Genetic algorithm, BWC. A classical problem in graph theory and combinatorial optimization is the known as Graph 

Coloring Problem (GC). This problem consists in assigning colors to vertices of a graph such 

that two adjacent vertices must have different colors. The objective in this problem is to find 

the minimum number of colors needed to coloring the graph under the coloring condition. 

In the case of the Graph Anti-Coloring Problem (GAC) the color assignment is opposite. In this 

case two adjacent vertices must have the same color or one of them does not have any color. 

In this problem the objective is different in the sense of number of colors which is fixed. This 

problem can be turned in an optimization problem. The GAC is NP-Complete, even with two 

colors[2]. In this work we deal with two colors special case of GAC with genetic algorithms 

and compare with Tabú Search which is the state of the art solution for this problem[3]. 

PALABRAS CLAVE: RESUMEN 

Anticoloración, Algoritmo genético, 

BWC. 

Un problema clásico en la teoría de gráficas es el conocido como problema de coloración 

(GC por sus siglas en inglés). Este problema consiste en asignar colores a los vértices de la 

gráfica tal que vértices adyacentes deben tener colores diferentes. El objetivo de este prob- 

lema es encontrar el mínimo número de colores necesarios para colorear la gráfica bajo la 

mencionada condición de coloración. En el caso del problema de anticoloración (GAC por 

sus siglas en inglés), la forma de asignar color es opuesta. En este caso vértices adyacentes 

deben tener el mismo color o al menos uno de ellos no debe tener color. En este problema 

el objetivo es diferente en el sentido del número de colores que en este caso es fijo. Este 

problema puede ser convertido en un problema de optimización. El GAC es NP-Completo 

aun cuando se usen sólo dos colores [2]. En este trabajo trataremos con el caso especial de 

dos colores del GAC mediante el uso de algoritmos genéticos y se compara con la búsqueda 

Tabú que es la mejor técnica conocida para la solución de este problema [3]. 

Recibido: 11 de julio del 2017 • Aceptado: 20 de octubre del 2017 • Publicado en línea: 28 de febrero del 2018 

17 

mailto:lurbanrivero@gmail.com
mailto:jararo@azc.uam.mx
mailto:rlb@azc.uam.mx
https://orcid.org/0000-0001-8266-4959
https://orcid.org/0000-0003-3986-1417
https://orcid.org/0000-0002-3318-5932


Programación Matemática y Software (2018) 10(1): 17-23. ISSN: 2007-3283

18

1. INTRODUCTION

In the 70s Berge proposed the following problem. 
If we have a  chessboard,  black queens and   
white queens with ,  positive integers. Is itpossible 
to place  black and  white queens so that black 
and white queens do not attack each other?[4]. The 
complexity of this problem remains open. Later in 1979 
Lipton and Tarjan tried to solve this question but they 
failed. They used the vertex separator theorem[6]to 
solve it but they could only solve the case of the tower 
piece. Berend et al., propose the concept of anti-coloring 
as a generalization of the vertex separator theorem[2], 
due the vertex separator theorem works only with two 
colors.

Definition 1 (Anti-coloring Condition). An an-
ti-coloring of the vertices of a graph  is a 
partial coloring of the vertices  uncolored, 
where  is the set of colors, such that, for each 
,  or at least one of them is uncolored.

Problem 1.1 (GAC).
Input: Given a simple and undirected graph 

 and positive integers 
Output: 1 If G has an anticoloring of V with bi 

vertices of color i, for all i ∈ {1 ...k},0 otherwise.

Example 1.  Given the graph of the FIGURE 1 and 
positive integers   (reds), 

(greens) and  (blues), a valid anti-coloring 
can be viewed in FIGURE 1

FIGURE  1: EXAMPLE OF THREE COLOR 
ANTI-COLORING (GRAY IS UNCOLORED)

If limited k = 2. We have the Black and White 
coloring problem (BWC). Berend et al., show that the BWC 
is NP-Complete [1]. In the rest of this work we deal with 
the optimization version of BWC (OBWC). In this case, we 
have the graph G with b vertices colored in black. The 
objective is to maximize the number of vertices that do 

not have black vertices as neighbors.

Problem 1.2 (OBWC).
Input: A simple and undirected graph 

and positive integer .
Output: Maximum number of vertices which do 

not have black vertices as neighbors.
 Genetic Algorithms
The genetic algorithms is a set of general 

methods to solve optimization problems, proposed by 
Holland[5]. This method is based in the neodarwinist 
evolutionary theory, using concepts of natural selection 
and evolution for the best adaptation of the species. In 
the field of the optimization, genetic algorithms treat the 
solutions of certain optimization problem as individuals 
and the objective function as the environment.

In the Algorithm 1 we show the general form of 
the genetic algorithm. Note that it is necessary to chose 
many procedures in Algorithm 1as the following:

Population size ( ).
Stop condition.

 Initialization, selection and replacement 
method.

Crossover and mutation method.
 Probability of crossing ( ), mutation (

) and proportion of replacement (
).

Many of these parameters are explicit in genetic 



 Programación Matemática y Software (2018) 10(1): 17-23. ISSN: 2007-3283

19

Now in our version of genetic algorithm for OBWC 
we deal with a lot of parameters which would be tuning. 
To avoid this problem we use irace tool [6]. This software 
implements F-Race procedures as a set of scripts to 
produce a set of parameters settings. The next list shows 
all parameters to be tuned its ranges and types, also 
including different operators for initialization, selection 
and crossover.

• Crossover probability: 
• Mutation probability: 

Replacement percentage:

• Population size: 

• Number of generations: 

• Selection Operator: 
 

- Rank selection (rank): picks the best member of 
the population every time.

 Roulette selection (roulette): this selection 
method picks an individual based on the magnitude of 
the fitness score relative to the rest of the population. 
The higher the score, the more likely an individual will 
be selected. Any individual has a probability p of being 
chosen where p is equal to the fitness of the individual 

algorithm like  or , but others do not. For 
example, the crossover method depends on individual 
representation and for a selected representation there 
are many crossing methods. To deal with this problem, 
some parameters were tuned with Automatic Tuning 
Tools like irace[7].

2. GENETIC ALGORITHM AND OBWC

For the application of genetic algorithm (GA) in 
OBWC we show a formulation as integer programming 
problem. Let  a graph and a positive integer 
b. For all :

 

The objective function is to maximize the number 
of white vertices on the graph. In constraint (2) we fix the 
value of b and the constraint (3) implies that if a selected 
vertex is colored with white (or black), its neighbors 
including it must have the same color or uncolored.

In our particular case we integrate whole model 
in the objective function of GA as follows:

 

Is easy to see that the equation (4) does not 
include the anti-coloring behavior. To avoid this problem 
we implement a repair procedure in the representation 
of the solution. Since all variables in the model are binary 
we represent each solution as a binary vector x that 
allows all values of  for all . Due to  can be 
calculated from thevalues of x, genome does not include 
y but is calculated as auxiliary variable.



Programación Matemática y Software (2018) 10(1): 17-23. ISSN: 2007-3283

20

For mutation we only use simple bit flip. We 
also include another version of genetic algorithm with 
no fixed mutation rate (GA-NM). Thomas and Schütz 
proposed the next expression to control the mutation 
rate in each generation[1].

 

Where n is the size of chromosome (solution re-
presentation),  is the total number of generations 
and t is the current generation.

3.  PARAMETER TUNED AND EXPERIMENTAL
RESULTS

To perform parameter tunning, irace needs 
training instances. In our case we choose one of the 
hardest case of each instance proposed by Berend, et al., 
to test new heuristics for OBWC[3]. The training instances 
are:

• 
• 
• Planar graph with 200 vertices (Pl200 ) and b 

= 150.
• Planar graph with 240 vertices (Pl240 ) and b 

= 150.
• Binomial random graph with 500 vertices, 

edge probability p=0.1, (rnd500,0.1)and b = 150.
• Binomial random graph with 500 vertices, 

edge probability p=0.2, (rnd500,0.2)and b = 150.
After irace runs with 8000 executions with GA and 

GA−NM respectively it, give us the parameters of the 
TABLE 1 and TABLE 2

TABLE 1: BEST CONFIGURATIONS FOR GA AFTER 
IRACE EXECUTION

TABLE 1: BEST CONFIGURATIONS FOR GA AFTER 
IRACE EXECUTION

 

TABLE 2: BEST CONFIGURATIONS FOR GA-NM 
AFTER IRACE EXECUTION

 

divided by the sum of the fitness of each individual in the 
population.

- Tournament selection (tournament): uses 
roulette selection to select two individuals then picks the 
one with the higher score.

- Deterministic sampling selector (dss) uses a 
two-staged selection procedure. In the first stage, each 
individual’s expected representation is calculated. A 
temporary population is filled using the individuals 
with the highest expected numbers. Any remaining 
positions are filled by first sorting the original individuals 
according to the decimal part of their expected re-
presentation, then selecting those highest in the list. The 
second stage of selection is uniform random selection 
from the temporary population.

- Stochastic remainder sampling selector (srs) 
uses a two-staged selection procedure. In the first 
stage, each individual’s expected representation is 
calculated. A temporary population is filled using the 
individuals with the highest expected numbers. Any 
fractional expected representations are used to give the 
individual more likelihood of filling a space. For example, 
an individual with a score of 1.4 will have 1 position 
then a 40% chance of a second position. The second 
stage of selection is uniform random selection from the 
temporary population.

- Uniform selection (uniform): picks randomly 
from the population. Any individual in the population 
has a probability p of being chosen where .

• Initialization Operator 

- uniform initialization: put 0 or 1 in each gene 
with probability 0.5.

- set initialization: put all genes in ”1”.
- unset initialization: put all genes in ”0”.

• Crossover operator 

- One Point Crossover (onepoint): uses one 
random point between [1,|V |-1] in binary vector to 
create Childs.

- Two Point Crossover (twopoint): uses two 
different random points between[1,|V | - 1] in binary 
vector to create Childs.

- Uniform crossover (uniform): pick with 
probability 0.5 which of two parentsgives each gene.

- Even Odd crossover (evenodd): pick even genes 
from first parent and oddgenes for second parent for first 
child. For second child, in opposite sense.



Programación Matemática y Software (2018) 10(1): 17-23. ISSN: 2007-3283

21

the case of Gurobi, all instances were run ina specialized 
hardware during one hour each instance. In the case of 
genetic algorithm the biggest instance spends around 
10 minutes in a single core computer.

 

FIGURE 1: EXPERIMENTAL RESULTS PLOT

4. CONCLUSIONS

We have presented two versions of genetic algorithm 
through which we found the best known solutions in 
most of the instances. Since the paper were proposed, 
instances did not show execution time or number of 
objective function calls, we only report the quality of 
our solutions and the overall comparison in all possible 
instances of [2] and its better results. Genetic algorithms 
are an alternative for Tabú Search relatively easy to 
implement in this particular case, and with a better 
performance in most cases.

All aspects of implementation were worked with 
GAlib wich is a general purpose library to implement 
Genetic Algorithms.  

In order to test GA  and GA-NM performance with 
the automatic parameter tunning. We execute100 times 
each instance with each configuration and we report 
the best result obtained(BEST ) and plot quality of each 
algorithm as in the Figure 2 with the following formula:

 

Where  is the optimal or state of the art 
solution and   The best solution for algorithm A.

To compare the performance of GA and GA−NM 
with the best known reported solution, we show 

 and as the solutions of 
Tab’u search with random initial solution and Tabú search 
with semi greedy initial solution respectively which is the 
best performance heuristics for OBWC [2], as can be seen 
in TABLE 3.Also all results of TABLE 3 are summarized in 
the FIGURE 2.

TABLE 3: EXPERIMENTAL RESULTS
 

 

 

Gurobi is a state of the art solver for linear and 
integer programming. As you can see in many cases, 
Gurobi solutions are better than any heuristic, but in 



Programación Matemática y Software (2018) 10(1): 17-23. ISSN: 2007-3283

22

REFERENCES

[1] Bäck, T., Schütz, M. Intelligent mutation rate 
control in canonical genetic algorithms. Foundations of 
Intelligent Systems. 1996, 158–167.

[2] Berend, D., Korach, E., Zucker, S. A Reduction 
of the anticoloring problem to connected graphs. 
Electronic Notes in Discrete Mathematics. 2007, 28 445–
451.

[3] Berend, D., Korach, E., Zucker, S. Tabú search for 
the BWC problem. Journal of Global Optimization. 2012, 
54 (4), 649–667.

[4] Berge, C., Minieka, E. Graphs and hypergraphs. 
North-Holland publishing company Amsterdam.

[5] Holland, J.H. Adaptation in Natural and Artificial 
Systems: An Introductory Analysis with Applications to 
Biology, Control and Artificial Intelligence. MIT Press.

[6] Lipton, R.J., Tarjan, R.E. A separator theorem for 
planar graphs. SIAM Journal on Applied Mathematics. 
1979, 36 (2), 177–189.

[7] López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, 
L.P., Stützle, T., Birattari, M. The irace package: Iterated 
Racing for Automatic Algorithm Configuration. 
Operations Research Perspectives. 2016, 1 (3), 43–58.



Programación Matemática y Software (2018) 10(1): 17-23. ISSN: 2007-3283

23

ABOUT THE AUTHORS

Luis Eduardo Urbán Rivero es Ingeniero en 
computación por la Universidad Autónoma 
Metropolitana (UAM) Azcapotzalco,  Maestro 
en optimización y Candidato a Doctor en 
Optimización por la misma Institución.

Javier Ramírez Rodríguez es Actuario por 
la Universidad Nacional Autónoma de 
México y Doctor en Ciencias Matemáticas 
por la Universidad Complutense de Madrid, 
España. Actualmente se desempeña como 
profesor investigador en el Departamento 
de Sistemas de la UAM Azcapotzalco.

Rafael López Bracho es es Actuario por la 
Universidad Nacional Autónoma de México, 
tiene un Diplome d’études approfondies 
en investigación de operaciones por la 
Université Scientifique et Medicale de 
Grenoble, Francia y Doctor en Informática 
por la Université de Paris Sud, Francia en el 
año 1981. Actualmente se desempeña como 
profesor investigador en el Departamento 

de Sistemas de la UAM Azcapotzalco.


	44a701b53ca8b9d89747c4ea823c679899866979b33fd9cf2e92dce8188814d3.pdf
	99d046fe7e8536ac00d3b89aa9527f091d2c4184f6fb7ebe30e7bc7bede09345.pdf



