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The two-dimensional phase unwrapping is an important and demanding task in measuring 

methods where a wrapped phase is retrieved such as in remote sensing applications and 

interferometry techniques. Among phase unwrapping tech-niques, Goldstein’s algorithm 

is one of the most robust and efficient. In this arti-cle, a partition strategy to parallelize 

Goldstein’s algorithm on a multi-core archi-tecture using the programming languages C and 

OpenMP is proposed. Experi-mental results, using simulated and real data, show that our 

proposal can be used for real time applications. 

PALABRAS CLAVE: RESUMEN 

cómputo paralelo, desenvolvimiento 

de fase, OpenMP 

El desenvolvimiento de fase en dos dimensiones es una tarea importante y de-mandante 

en los métodos donde se obtienen mapas de fase envueltos tales como en aplicaciones de 

percepción remota y técnicas de interferometría. Entre las téc-nicas de desenvolvimiento 

de fase, el algoritmo de Goldstein es uno de los más robustos y eficientes. En este artículo,  

se propone una estrategia de partición para obtener una versión paralela del algoritmo de 

Goldstein sobre una arquitectura multi-núcleo usando los lenguajes de programación C y 

OpenMP. Resultados experimentales obtenidos con datos simulados y reales muestran que 

nuestra pro-puesta se puede usar en aplicaciones en tiempo real. 
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1. Introduction

The In measuring techniques such as synthetic 
aperture radar (SAR), interferometric synthetic aperture 
radar (INSAR), magnetic resonance imaging (MRI), pha-
se-shifting digital holography (PSDH) and digital fringe 
projection (DFP), among others, a wrapped phase map 

is retrieved ),( yxwφ   which is characterized by its 

π2   disconti-nuities [1, 2]. The phase unwrapping (PU) 

problem consists in eliminating these π2  ``jumps’’ to 

obtain a continuous or unwrapped phase map ),( yxφ  
. The wrapped and unwrapped maps are related by the 

equation  ),(2),(),( yxmyxyxw πφφ +=  where ),( yxm  is 
an integer function to be determined. The PU becomes 
a challenging prob-lem when the absolute phase 
differences between adjacent pixels at points other than 
discontinuities are greater than π  . These discontinuities 
can appear as high-frequency, high amplitude noise, dis-
continuous phase jumps and regional under-sampling 
in the wrapped phase [3, 4]. 

Several PU algorithms exist that can be classified 

in spatial and temporal: in the first, we find π2  dis-
continuities in the spatial domain and in the last, it is 
used a sequence of fringe patterns with different fringe 
pitches or frequencies in order to determine the fringe 
orders. Among the most used spatial PU algorithms 
there is Gold-stein’s method [5], quality-guide method 
[6], Flynn’s method [7] and minimum  -norm method [8]. 
On the other hand, there are temporal PU algorithms 
such as the Huntley-Romero method [9], gray-code 
method [10] and multi-frequency method [11].

With the demand of real-time measuring 
applications, an efficient PU algo-rithm is required. A 
number of authors have proposed to use multi-core 
and graphics processing unit (GPU) architectures to 
speed up the unwrapping process. In [12], a parallel 
version of Goldstein’s algorithm is proposed using a 
GPU architecture for wrapped phase maps of sizes up 
to 1024x1024 pixels. In [13], a parallel approach of the  
-norm algorithm is proposed, based on the simulated 
annealing; it is used to process wrapped phase maps 
of size up to 3000x3000 pixels. A similar approach was 
presented in [14], based on the discrete cosine transform 
and applied to process off-axis holograms.

In this article, a new parallelization of Goldstein’s 
algorithm is proposed on a multi-core architecture. 
We take advantage of a partition strategy to speed 
up the unwrapping process for large wrapped phase 

maps. Experimental evaluation using simulated and 
real data show that the execution time of our proposal 
is competitive to the state of the art. The organization 
of this article is as follows: in Section 2, our partition 
strategy to parallelize Goldstein’s algorithm is presented; 
in Section 3, the results; and in Section 4, the conclusions.

2. The partition strategy

The Goldstein algorithm consists of three main 
steps (see Fig. 1): (a) identification of residues, (b) 
branch-cut placement and (c) integration. The iden-
tification of residues finds inconsistencies pixel by pixel 

in a wrapped phase map; a pixel ),( yxp =  is a residue 

if the sum 4321 ∆+∆+∆+∆=q  is different from zero, 
where

 

If 0>q  , then p  is a residue of positive charge, 
and it is of negative charge if 0<q . The objective of 
the branch cut placement is to place lines between 
positive and negative residues and if there is no residue 
of an opposite charge, then the cut can be placed with 
the image border; the cuts serve as barriers to avoid 
residues in any route of integration. Given a residue, we 
look for the closer residue of the oppo-site charge within 
a search window of radius r  , so that, the maximum 
length of a cut is r  . Here, a radius of r=25 pixels is used. 
The integration adds multiples of  π2  to the wrapped 
phase values to get an approximation of the unwrapped 

phase ),( yxφ  . It is started by selecting an initial pixel, 
whose unwrapped value corresponds to its
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all pixels in region  1T  are unwrapped, then a second 
centered region is selected and divided into sub-regions 

4321 ,,, TTTT  of the same size as the initial region 1T . 
There-fore, a thread is created to process each region; 
the initial pixels used to start the un-wrapping process 
for each sub-region, are chosen in the overlapping area 

with the previous region 1T  . This process continues until 
the image is fully resolved.

 

(a) (b)

(c) (d)

Fig. 2. Simulated and real data: (a) simulated 
wrapped phase of the peaks distribution with added 
white noise, (b) unwrapped phase of the peaks 
distribution, (c) ascending interferogram retrieved 
by Sentinel-1A/B satellite over the affected area after 
the 6.2M earthquake in Central Italy on August 24th, 
2016 [15], and (d) unwrapped phase of the earthquake 
interferogram.

3. Experimental evaluation

The experiments were achieved on a desktop 
computer with the following character-istics: Intel core 
i7 processor at 3.4 GHz working frequency, 11.7 Gb in 
RAM, and Linux Mint 17.3 Cinnamon 64 bit operating 
system. The physical number of cores in this processor 
are 4 where it is possible to create two threads per core 
for a total of 8 threads. The programming language that 
were used are C and OpenMP. Two wrapped phase maps 
were used for efficient tests: the first one consisted of 
a simu-lated phase map with white noise added to the 
peaks distribution. The second one consists of a real 
phase map obtained by Sentinel-1A/B which was used 
for INSAR analysis. Figs. 2(a) and 2(c) show the wrapped 

Fig. 1. Serial and parallel process of Goldstein’s 
algorithm: (top) serial process for steps (a) iden-tification 
of residues, (b) branch-cut placement and (c) integration; 
(middle) a pixel’s neighbor-hood, search region to find 
an opposite’s charge residue, and color notations used in 
this diagram, respectively; (bottom) partition strategy to 
parallelize Goldstein’s algorithm.

wrapped value; their neighbor pixels are resolved 
and are inserted in a queue data structure, then a pixel is 
removed from the queue, their neighbors are resolved 
and added again to the data structure; this process is 
repeated until the queue is empty. The pixels that are 
inserted in the data structure do not have to be residues 
nor do they have to belong to a cut. Finally, the pixels 
that are marked ``as cut’’ are resolved.

We propose a partition strategy of the steps 
(a)-(b) to parallelize Goldstein’s algo-rithm as follows: (a’) 
in the identification of residues, it is proposed to divide 

the im-age into stripes  nTTT ,,, 21   , the number of 
partitions will depend on the cores that are available in 
the processor, creating a thread for each strip that will 
seek for resi-dues as in the serial version of Goldstein’s 
algorithm; (b’) in the branch cut placement, the image 

is partitioned into stripes  nTTT 221 ,,,   where n   is the 
number of threads that can be created. To balance the 
largest number of residues, an n  number of threads is 
firstly created to process the even stripes to find branch 
cuts, last, the odd stripes are processed. In both cases, it 
is done as in the serial version; and (c’) the inte-gration 

process starts by selecting a square central region 1T   in 
the image, an initial pixel is selected as starting point 
and a thread is created to process this region. When 
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a parallel unweighted least squares phase unwrapping 
algorithm are proposed, respectively. These proposals 
use CUDA programming on a GPU architecture, while in 
our proposal, we use a multi-core architecture.

 

Fig. 3. Branch cuts of the earthquake wrapped 
phase map shown in Fig. 2. An amplification of a 
conflicting region is shown in which isolated pixels that 
will produce a discontinuous unwrapped phase can be 
observed.

Table 2. Comparison of our proposal with reported 
results of other authors. The only common characteristic 
in this comparison among two parallel proposals of 
unwrapping algorithms is the used image size.

 
Image size Pham [12] Backoach [14] proposed

256x256 - 0.51 1.78

512x512 2.072 1.7 4.95

1024x1024 11.719 7.78 13.15

2048x2048 - 28.7 48.89

4. Conclusions

A parallel version of Goldstein’s algorithm has 
been proposed on a multi-core archi-tecture that 
takes advantage of a partition strategy to speedup 
the unwrapping pro-cess. Our parallel algorithm im-
plementation has been validated using simulated 
phase data of the peaks distribution and real data 
of an earthquake interferogram obtained of INSAR 
applications. The obtained experimental results show 
that the running time of the parallel algorithm is 
competitive with the state of the art. Alt-hough, it was 
not possible to compare with other authors since the 
used computer systems to perform the validation do not 
have the same characteristics.

phase maps used in this research. Table 1 summarizes 
the results obtained using our parallel implementation 
of Gold-stein’s algorithm. First, the performance of the 
serial and parallel Goldstein algorithms was evaluated 
using the peaks phase map for several sizes. In Fig. 
2(b), an example of the unwrapped phase for the peaks 
distribution is shown. Last, the wrapped phase map that 
was used is shown in Fig. 2(c) of size 7202x5854 pixels. 
In Fig. 2(d), the unwrapped phase obtained using our 
parallel algorithm can be seen.

As it can be seen in Table 1, the speedup factor of 
the simulated data increases with the size of the wrapped 
phase map. However, for the earthquake real data, the 
speedup factor is not the expected according to its size 
since a lot of residues were found in the wrapped phase 
map. In the last two columns in Table 1, the number 
of detected residues in the wrapped phase maps are 
shown for the simulated and real data. Also, the required 
memory resources of the serial and parallel Goldstein’s 
algo-rithms are shown. In both cases, two dimensional 
arrays of single-precision floating-point type are used. 
Fig. 3 shows the branch cuts for the earthquake wrapped 
phase map, which explains why the speedup factor 
of the parallel Goldstein algorithm is less than when 
simulated data is used.

Table 1. Comparison of the execution time 
between the serial and parallel implementations of 
Goldstein’s phase unwrapping algorithm for simulated 
and real data. The execution times are given in mi-
lliseconds and are averaged over 20 repetitions. The 
number of threads created are 8 for all tests. The speedup 
factor corresponds to the ratio between the execution 
time of the serial and parallel algorithms.

 
Image size 

(pixels)
Time 
serial

Time 
parallel

speedup Number of 
residous

Used 
memory 
(Mbits)

128x128 2.07 0.6 3.54 97 0.125

256x256 5.99 1.78 3.37 22 0.5

Peaks 512x512 23.28 4.95 4.7 42 2

1024x1024 106.18 13.15 8.07 162 8

2048x2048 512.36 48.89 10.48 568 32

4096x4096 2600.51 159.03 16.35 2370 128

Earth-
quake

7202x7202 4226.88 359.5 11.76 369381 322

In Table 2, a comparison of the obtained execution 
times of our proposal are shown with regard to other 
authors. In Pham et al. [12] and in Backoach et al. [14], 
a parallel implementation of Goldstein’s algorithm and 
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Using linear interpolation, one can notice that 
the execution time of the par-allel algorithm for VGA 
resolution (640x480 pixels) is of 4.6645 ms which gives 
us a frame rate of 214.38 images per second. This frame 
rate is superior for most of the real-time visualization 
applications using VGA resolution. It is expected that 
the effi-ciency of our proposal will improve if more com-
putational resources are used, name-ly, more processing 
cores. Future research will be to apply our parallel 
algorithm in remote sensing application, namely, to 
process the wrapped phase retrieved by SAR and INSAR 
systems which have important use in the analysis and 
construction of digital elevation models.
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