
Progmat,2018,10,1; http://www.progmat.uaem.mx http://dx.doi.org/10.30973/progmat/2018.10.1/1

Programación Matemática y Software (2018) 10(1): 1-7. ISSN: 2007-3283

A partition strategy to speedup Goldstein’s phase unwrapping

algorithm on a multi-core architecture

Una estrategia de partición para acelerar el algoritmo de desenvolvimiento de fase de

Goldstein sobre una arquitectura multi-núcleo

Abel López-Ocaña1, William Cruz-Santos1 , Anmi García-Arellano2 , and Juvenal

Rueda-Paz Abe_lo_pc@hotmail.com, wdelacruzd@uaemex.mx, anmigarcia@ecosur.mx,

jruedap@uaemex.mx
1 CU-UAEM Valle de Chalco, Hermenegildo Galeana 3, Valle de Chalco, Estado de México 56615, México

2 CONACYT-ECOSUR, Unidad Chetumal, Chetumal, Quintana Roo, México

KEYWORDS: ABSTRACT

parallel computing, phase

unwrapping, OpenMP
The two-dimensional phase unwrapping is an important and demanding task in measuring

methods where a wrapped phase is retrieved such as in remote sensing applications and

interferometry techniques. Among phase unwrapping tech-niques, Goldstein’s algorithm

is one of the most robust and efficient. In this arti-cle, a partition strategy to parallelize

Goldstein’s algorithm on a multi-core archi-tecture using the programming languages C and

OpenMP is proposed. Experi-mental results, using simulated and real data, show that our

proposal can be used for real time applications.

PALABRAS CLAVE: RESUMEN

cómputo paralelo, desenvolvimiento

de fase, OpenMP

El desenvolvimiento de fase en dos dimensiones es una tarea importante y de-mandante

en los métodos donde se obtienen mapas de fase envueltos tales como en aplicaciones de

percepción remota y técnicas de interferometría. Entre las téc-nicas de desenvolvimiento

de fase, el algoritmo de Goldstein es uno de los más robustos y eficientes. En este artículo,

se propone una estrategia de partición para obtener una versión paralela del algoritmo de

Goldstein sobre una arquitectura multi-núcleo usando los lenguajes de programación C y

OpenMP. Resultados experimentales obtenidos con datos simulados y reales muestran que

nuestra pro-puesta se puede usar en aplicaciones en tiempo real.

Recibido: 24 Octubre del 2017 • Aceptado: 26 de enero del 2017 • Publicado en línea: 28 de febrero del 2018

1

mailto:Abe_lo_pc@hotmail.com
mailto:wdelacruzd@uaemex.mx
mailto:anmigarcia@ecosur.mx
mailto:jruedap@uaemex.mx
https://orcid.org/0000-0001-9892-1913
https://orcid.org/0000-0001-7732-3551
https://orcid.org/0000-0001-5181-3093

Programación Matemática y Software (2018) 10(1): 1-7. ISSN: 2007-3283

2

1. Introduction

The In measuring techniques such as synthetic
aperture radar (SAR), interferometric synthetic aperture
radar (INSAR), magnetic resonance imaging (MRI), pha-
se-shifting digital holography (PSDH) and digital fringe
projection (DFP), among others, a wrapped phase map

is retrieved),(yxwφ which is characterized by its

π2 disconti-nuities [1, 2]. The phase unwrapping (PU)

problem consists in eliminating these π2 ``jumps’’ to

obtain a continuous or unwrapped phase map),(yxφ
. The wrapped and unwrapped maps are related by the

equation),(2),(),(yxmyxyxw πφφ += where),(yxm is
an integer function to be determined. The PU becomes
a challenging prob-lem when the absolute phase
differences between adjacent pixels at points other than
discontinuities are greater than π . These discontinuities
can appear as high-frequency, high amplitude noise, dis-
continuous phase jumps and regional under-sampling
in the wrapped phase [3, 4].

Several PU algorithms exist that can be classified

in spatial and temporal: in the first, we find π2 dis-
continuities in the spatial domain and in the last, it is
used a sequence of fringe patterns with different fringe
pitches or frequencies in order to determine the fringe
orders. Among the most used spatial PU algorithms
there is Gold-stein’s method [5], quality-guide method
[6], Flynn’s method [7] and minimum -norm method [8].
On the other hand, there are temporal PU algorithms
such as the Huntley-Romero method [9], gray-code
method [10] and multi-frequency method [11].

With the demand of real-time measuring
applications, an efficient PU algo-rithm is required. A
number of authors have proposed to use multi-core
and graphics processing unit (GPU) architectures to
speed up the unwrapping process. In [12], a parallel
version of Goldstein’s algorithm is proposed using a
GPU architecture for wrapped phase maps of sizes up
to 1024x1024 pixels. In [13], a parallel approach of the
-norm algorithm is proposed, based on the simulated
annealing; it is used to process wrapped phase maps
of size up to 3000x3000 pixels. A similar approach was
presented in [14], based on the discrete cosine transform
and applied to process off-axis holograms.

In this article, a new parallelization of Goldstein’s
algorithm is proposed on a multi-core architecture.
We take advantage of a partition strategy to speed
up the unwrapping process for large wrapped phase

maps. Experimental evaluation using simulated and
real data show that the execution time of our proposal
is competitive to the state of the art. The organization
of this article is as follows: in Section 2, our partition
strategy to parallelize Goldstein’s algorithm is presented;
in Section 3, the results; and in Section 4, the conclusions.

2. The partition strategy

The Goldstein algorithm consists of three main
steps (see Fig. 1): (a) identification of residues, (b)
branch-cut placement and (c) integration. The iden-
tification of residues finds inconsistencies pixel by pixel

in a wrapped phase map; a pixel),(yxp = is a residue

if the sum 4321 ∆+∆+∆+∆=q is different from zero,
where

If 0>q , then p is a residue of positive charge,
and it is of negative charge if 0<q . The objective of
the branch cut placement is to place lines between
positive and negative residues and if there is no residue
of an opposite charge, then the cut can be placed with
the image border; the cuts serve as barriers to avoid
residues in any route of integration. Given a residue, we
look for the closer residue of the oppo-site charge within
a search window of radius r , so that, the maximum
length of a cut is r . Here, a radius of r=25 pixels is used.
The integration adds multiples of π2 to the wrapped
phase values to get an approximation of the unwrapped

phase),(yxφ . It is started by selecting an initial pixel,
whose unwrapped value corresponds to its

Programación Matemática y Software (2018) 10(1): 1-7. ISSN: 2007-3283

3

all pixels in region 1T are unwrapped, then a second
centered region is selected and divided into sub-regions

4321 ,,, TTTT of the same size as the initial region 1T .
There-fore, a thread is created to process each region;
the initial pixels used to start the un-wrapping process
for each sub-region, are chosen in the overlapping area

with the previous region 1T . This process continues until
the image is fully resolved.

(a) (b)

(c) (d)

Fig. 2. Simulated and real data: (a) simulated
wrapped phase of the peaks distribution with added
white noise, (b) unwrapped phase of the peaks
distribution, (c) ascending interferogram retrieved
by Sentinel-1A/B satellite over the affected area after
the 6.2M earthquake in Central Italy on August 24th,
2016 [15], and (d) unwrapped phase of the earthquake
interferogram.

3. Experimental evaluation

The experiments were achieved on a desktop
computer with the following character-istics: Intel core
i7 processor at 3.4 GHz working frequency, 11.7 Gb in
RAM, and Linux Mint 17.3 Cinnamon 64 bit operating
system. The physical number of cores in this processor
are 4 where it is possible to create two threads per core
for a total of 8 threads. The programming language that
were used are C and OpenMP. Two wrapped phase maps
were used for efficient tests: the first one consisted of
a simu-lated phase map with white noise added to the
peaks distribution. The second one consists of a real
phase map obtained by Sentinel-1A/B which was used
for INSAR analysis. Figs. 2(a) and 2(c) show the wrapped

Fig. 1. Serial and parallel process of Goldstein’s
algorithm: (top) serial process for steps (a) iden-tification
of residues, (b) branch-cut placement and (c) integration;
(middle) a pixel’s neighbor-hood, search region to find
an opposite’s charge residue, and color notations used in
this diagram, respectively; (bottom) partition strategy to
parallelize Goldstein’s algorithm.

wrapped value; their neighbor pixels are resolved
and are inserted in a queue data structure, then a pixel is
removed from the queue, their neighbors are resolved
and added again to the data structure; this process is
repeated until the queue is empty. The pixels that are
inserted in the data structure do not have to be residues
nor do they have to belong to a cut. Finally, the pixels
that are marked ``as cut’’ are resolved.

We propose a partition strategy of the steps
(a)-(b) to parallelize Goldstein’s algo-rithm as follows: (a’)
in the identification of residues, it is proposed to divide

the im-age into stripes nTTT ,,, 21  , the number of
partitions will depend on the cores that are available in
the processor, creating a thread for each strip that will
seek for resi-dues as in the serial version of Goldstein’s
algorithm; (b’) in the branch cut placement, the image

is partitioned into stripes nTTT 221 ,,,  where n is the
number of threads that can be created. To balance the
largest number of residues, an n number of threads is
firstly created to process the even stripes to find branch
cuts, last, the odd stripes are processed. In both cases, it
is done as in the serial version; and (c’) the inte-gration

process starts by selecting a square central region 1T in
the image, an initial pixel is selected as starting point
and a thread is created to process this region. When

Programación Matemática y Software (2018) 10(1): 1-7. ISSN: 2007-3283

4

a parallel unweighted least squares phase unwrapping
algorithm are proposed, respectively. These proposals
use CUDA programming on a GPU architecture, while in
our proposal, we use a multi-core architecture.

Fig. 3. Branch cuts of the earthquake wrapped
phase map shown in Fig. 2. An amplification of a
conflicting region is shown in which isolated pixels that
will produce a discontinuous unwrapped phase can be
observed.

Table 2. Comparison of our proposal with reported
results of other authors. The only common characteristic
in this comparison among two parallel proposals of
unwrapping algorithms is the used image size.

Image size Pham [12] Backoach [14] proposed

256x256 - 0.51 1.78

512x512 2.072 1.7 4.95

1024x1024 11.719 7.78 13.15

2048x2048 - 28.7 48.89

4. Conclusions

A parallel version of Goldstein’s algorithm has
been proposed on a multi-core archi-tecture that
takes advantage of a partition strategy to speedup
the unwrapping pro-cess. Our parallel algorithm im-
plementation has been validated using simulated
phase data of the peaks distribution and real data
of an earthquake interferogram obtained of INSAR
applications. The obtained experimental results show
that the running time of the parallel algorithm is
competitive with the state of the art. Alt-hough, it was
not possible to compare with other authors since the
used computer systems to perform the validation do not
have the same characteristics.

phase maps used in this research. Table 1 summarizes
the results obtained using our parallel implementation
of Gold-stein’s algorithm. First, the performance of the
serial and parallel Goldstein algorithms was evaluated
using the peaks phase map for several sizes. In Fig.
2(b), an example of the unwrapped phase for the peaks
distribution is shown. Last, the wrapped phase map that
was used is shown in Fig. 2(c) of size 7202x5854 pixels.
In Fig. 2(d), the unwrapped phase obtained using our
parallel algorithm can be seen.

As it can be seen in Table 1, the speedup factor of
the simulated data increases with the size of the wrapped
phase map. However, for the earthquake real data, the
speedup factor is not the expected according to its size
since a lot of residues were found in the wrapped phase
map. In the last two columns in Table 1, the number
of detected residues in the wrapped phase maps are
shown for the simulated and real data. Also, the required
memory resources of the serial and parallel Goldstein’s
algo-rithms are shown. In both cases, two dimensional
arrays of single-precision floating-point type are used.
Fig. 3 shows the branch cuts for the earthquake wrapped
phase map, which explains why the speedup factor
of the parallel Goldstein algorithm is less than when
simulated data is used.

Table 1. Comparison of the execution time
between the serial and parallel implementations of
Goldstein’s phase unwrapping algorithm for simulated
and real data. The execution times are given in mi-
lliseconds and are averaged over 20 repetitions. The
number of threads created are 8 for all tests. The speedup
factor corresponds to the ratio between the execution
time of the serial and parallel algorithms.

Image size

(pixels)
Time
serial

Time
parallel

speedup Number of
residous

Used
memory
(Mbits)

128x128 2.07 0.6 3.54 97 0.125

256x256 5.99 1.78 3.37 22 0.5

Peaks 512x512 23.28 4.95 4.7 42 2

1024x1024 106.18 13.15 8.07 162 8

2048x2048 512.36 48.89 10.48 568 32

4096x4096 2600.51 159.03 16.35 2370 128

Earth-
quake

7202x7202 4226.88 359.5 11.76 369381 322

In Table 2, a comparison of the obtained execution
times of our proposal are shown with regard to other
authors. In Pham et al. [12] and in Backoach et al. [14],
a parallel implementation of Goldstein’s algorithm and

Programación Matemática y Software (2018) 10(1): 1-7. ISSN: 2007-3283

5

Using linear interpolation, one can notice that
the execution time of the par-allel algorithm for VGA
resolution (640x480 pixels) is of 4.6645 ms which gives
us a frame rate of 214.38 images per second. This frame
rate is superior for most of the real-time visualization
applications using VGA resolution. It is expected that
the effi-ciency of our proposal will improve if more com-
putational resources are used, name-ly, more processing
cores. Future research will be to apply our parallel
algorithm in remote sensing application, namely, to
process the wrapped phase retrieved by SAR and INSAR
systems which have important use in the analysis and
construction of digital elevation models.

Acknowledgements

The first author acknowledges support from
Conacyt through a scholarship to pursue master studies
at the CU-UAEM Valle de Chalco.

Programación Matemática y Software (2018) 10(1): 1-7. ISSN: 2007-3283

6

References

1. J. R. Fienup. Phase retrieval algorithms: a comparison. Appl.
Opt., 21(15):2758–2769, Aug1982.

2. Q. Kemao. Windowed Fringe Pattern Analysis. EBL-
Schweitzer. SPIE, 2013.

3. D.C. Ghiglia and M.D. Pritt. Two-dimensional phase
unwrapping: theory, algorithms, andsoftware. Wiley-
Interscience publication. Wiley, 1998.

4. Z. Malacara and M. Servín. Interferogram Analysis For
Optical Testing, Second Edition. Optical engineering. CRC
Press, 2016.

5. Richard M. Goldstein, Howard A. Zebker, and Charles L.
Werner. Satellite radar interferome-try: Two-dimensional
phase unwrapping. Radio Science, 23(4):713–720, 1988.

6. Hock Lim, Wei Xu, and Xiaojing Huang. Two new practical
methods for phase unwrapping. In Geoscience and Remote
Sensing Symposium, 1995. IGARSS ’95. ’Quantitative Remote
Sensing for Science and Applications’, International, volume
1, pages 196–198 vol.1, Jul 1995.

7. T. J. Flynn. Two-dimensional phase unwrapping with
minimum weighted discontinuity. J. Opt. Soc. Am. A,
14(10):2692–2701, 1997.

8. Dennis C. Ghiglia and Louis A. Romero. Minimum lp-norm
two-dimensional phase unwrap-ping. J. Opt. Soc. Am. A,
13(10):1999–2013, Oct 1996.

9. J. M. Huntley and H. Saldner. Temporal phase-unwrapping
algorithm for automated interfero-gram analysis. Appl. Opt.,
32(17):3047–3052, Jun 1993.

10. Giovanna Sansoni, Matteo Carocci, and Roberto
Rodella. Three-dimensional vision based on a combination
of gray-code and phase-shift light projection: analysis
and compensation of the systematic errors. Appl. Opt.,
38(31):6565–6573, Nov 1999.

11. Yajun Wang and Song Zhang. Superfast multifrequency
phase-shifting technique with opti-mal pulse width
modulation. Opt. Express, 19(6):5149–5155, Mar 2011.

12. Hoa Pham, Huafeng Ding, Nahil Sobh, Minh Do,
Sanjay Patel, and Gabriel Popescu. Off-axis quantitative
phase imaging processing using cuda: toward real-time
applications. Biomed. Opt. Express, 2(7):1781–1793, Jul 2011.

13. Q. Huang, H. Zhou, S. Dong, and S. Xu. Parallel branch-
cut algorithm based on simulated annealing for large-scale
phase unwrapping. IEEE Transactions on Geoscience and
Remote Sensing, 53(7):3833–3846, July 2015.

14. Ohad Backoach, Saar Kariv, Pinhas Girshovitz, and Natan
T. Shaked. Fast phase processing in off-axis holography by
cuda including parallel phase unwrapping. Opt. Express,
24(4):3177–3188, Feb 2016.

15. Petar Marinkovic and Yngvar Larsen. Mapping and
analysis of the Central Italy Earthquake (2016) with Sentinel-1
A/B interferometry, August 2016.

Programación Matemática y Software (2018) 10(1): 1-7. ISSN: 2007-3283

7

About the authors

Abel López-Ocaña obtained his Bs
in computer engineering from the
Universidad Autónoma del Estado de
México (UAEMex) and currently is a
master student in computer science at
the UAEMex.

William Cruz-Santos obtained a Ms and
Phd from the Centro de Investigación
y de Estudios Avanzados del IPN
(Cinvestav). His research interests are
quantum computing, computer vi-sion,
computational complexity and applied
optics.

Anmi García-Arellano obtained a Phd
from the Instituto Nacional de Astrofísica,
Óptica y Elec-trónica (INAOE). His research
interests are digital image processing
and optical instrumenta-tion.

Juvenal Rueda-Paz obtained a Phd
in mathematics from Universidad
Autónoma de Morelos. His research
interests are in theoretical physics,
special functions, mathematical optics
and quan-tum computing.

	2da5e581ff77de5d9893ec0f32a819a31cd611a6d727bbea7442fcb2372cfefc.pdf
	af87568cbfe8f36bfaf0a45118a0bb5613f432e1b58054d970574e98f5fedf16.pdf

