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PALABRAS CLAVE: RESUMEN 

FFT, modelado, optimización, 

controlador PID, algoritmo genético. 
Los métodos de identificación y diseño de controladores PID a partir de múltiples puntos de la 

respuestaenfrecuencia,presentanmejoresresultados,encomparaciónconlosqueconsideran un 

solo punto de la respuesta en frecuencia. Los puntos identificados, los cuales se obtienen 

mediante el método del escalón en lazo cerrado, se utilizan para el diseño de controladores PID, 

y para modelar sistemas lineales mediante función de transferencia, proponiendo la estructura 

de un sistema de segundo orden más un retardo. Ambos problemas son planteados como un 

problema de optimización no lineal de mínimos cuadrados sin restricciones. El problema de 

optimización se resuelve mediante un algoritmo genético simple. 
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The Identification problem and PID controllers design by means of multiple points of the 

frequency response are more convenient than only one point of the frequency response. In 

this article a proposal to solve two control problems from multiple point identification process 

frequencyresponseoflinearmodels,usingaclosedloopstep,ispresented.Theidentifiedpoints 

are used, in one case a PID controller tuning is pointed out, and the other application deals 

with transfer function modeling problem, by means of a second order system plus time delay. 

Both problems arestated asanonlinear least squares unconstrained optimization problem.The 

optimization problem is solved with a simple genetic algorithm. 
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1 INTRODUCCIÓN

Proportional-Integral-Derivative (PID) controllers are 
widely used in many control systems. In process control, 
more than ninety-five percent of the control loops are 
of PI or PID type [1, 2]. Since Ziegler and Nichols [3], 
proposed their empirical method to tune PID controllers, to 
date, many relevant methods to improve the tuning of PID 
controllers has been reported at the control literature, one of 
them is a tutorial given by Hang et al. [4].As is well known, 
the dynamics of a process can be known from the transient 
response, so when it gets the step response is possible to 
determine both the process gain and the process dynamics. 
Due to this statement, in this work, the frequency response 
is obtained from the step response in a close loop system. 
The size of the step can be as small as it has desired, this 
is a great advantage because it can apply a small step near 
the operation point, without significantly affecting process 
safety.Step response test have been widely used for model 
identification in the process industry [5], and has remained 
attractive owing to its simplicity. Several researchers 
have made important contributions on Control-oriented 
model identification methods [6, 7-8, 9-10]. A significant 
tutorial review on process identification from step or relay 
feedback was presented by Liu et al, [5], where the most 
important identification methods developed in the past 
three decades are surveyed. In the first proposals on auto-
tuning methods, one estimated point over Nyquist curve 
is enough to tune a PID controller. In recently studies, it 
has been shown that the multiple identified points allow 
better PID tuning controller [4-5]. This work presents two 
applications of the multiple-point identification method, in 
order to tune PID controllers and, on the other hand, to 
obtain transfer function coefficients. The control problem 
is posed as a nonlinear least squares unconstrained 
problem. A genetic algorithm is proposed to solve the 
optimization problem. The same methodology can be used 
for both cases: PID tuning and transfer function modeling. 
Nonlinear least squares methods involve an iterative 
improvement of parameter values in order to reduce the 
sum of the squares of the errors between the function and 
the measured data points. Problems of this type occur 
when fitting model functions to experimental data. The 
Levenberg-Marquardt algorithm [11-12], is the most 
common method for nonlinear least-squares minimization, 
nevertheless it can suffer from a slow convergence, 
and it is possible to finds only a local minimum [12].

The PID’s designed with this method takes into account 

the effect of the sensitivity function values of the closed-
loop system as a measure of robustness against possible 
variations in the parameters of the plant [1-2, 13-14]. The 
proposed plants in this article cover a wide range of cases: 
stable, with short and long dead times, whit real and complex 
poles, integrating process and with positive and negative 
zeros, which are representative of the automatic control 
literature [4, 13]. The contents of the paper are described 
as follows: In section 2 the basic definitions of a nonlinear 
least squares unconstrained minimization problem, and the 
use of close loop step transient test, are shown. Section 3, 
presents applications of the multiple point identification 
method to a PID controller tuning and to transfer function 
modeling. Conclusions are contained in section 4.

2. BASIC CONCEPTS

2.1 Unconstrained minimization problem

In a large number of practical problems, the objective 
function f (x) is a sum of squares of nonlinear functions

that needs to be minimized.  We consider the following 
problem

This is an unconstrained nonlinear least squares 
minimization problem. It is called least squares because 
the sum of squares of these functions is the quantity to be 
minimized. Problems of this type occur when fitting model 
functions to data: if φ(x; t) represents the model function 
with t as an independent variable, then each rj (x) = φ(x; 
tj) − yj where φ (tj, yj) is the given set of data points [11-12]. 

2.2 Use of close loop step transient

    It was shown by Wang et al. [15-16] who propose a 
method that can identify multiple points simultaneously 
under one relay test. For a close loop step transient 
system in Figure 1, the process input u(t) and output 
y(t) are recorded from the initial time until, the system 
reaches a steady value, after the transient step response. 
U(t) and y(t) are not integrable since they do not die 
down in finite time (at Tss time). They cannot be directly 
transformed to frequency response meaningfully using 
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In this identification problem is very important the 
adequate selection of α value, in [18] a rule to compute 
the α value in terms of the Tss time (see Figure 2) is 
proposed, where the system reaches a steady value, after 
the transient step response. The value of α, it can be 
computed by means of:

Where Δy(Tss)=y(Tss)-y(0), denotes the dynamic output 
response in terms of the settling time (Tss)  to the step 
change, in which y(0) indicates initial steady output value 
before the step test. δ is a computational threshold which 
may be practically taken smaller than Δy(Tss)x10-6

Figure 2. Signals under step feedback

 The method can accurately identify as many as desired 
frequency response points with one step experiment. They 
may be very useful for improving the performance of PID 
and other model-based controllers. In both applications: 
PID tuning and transfer function modeling, the shifted 
frequency response may be used without the needing to 
computer G(jw). To illustrate the method, a model with 
oscillatory dynamics is considered in simulation.

Figure 3 shows the identified frequency responses for 
these processes using this method, for G(jw).

FFT. A decay exponential e-αt is then introduced to form

such that u(t) and y(t) will decay to zero 
exponentially as t approaches infinity. Applying 
the Fourier transform to (3) and (4) yields

For a process G(s)=Y(s)/U(s), at s=jw+α, one has

(Y ) and (jw) and U and(jw) can be computed at discrete 
frequencies with the standard FFT technique [15-17]. 
Therefore, the shifted process frequency response 
G(jw+α) can be obtained from (5). To find G(jw) from 
G(jw+α), we firts take the inverse FFT of G(jw+α)  as

It then follows that the process impulse response g(kT)  is

Applying the FFT again to g(kT) leads to the process 
frequency response:

Since the identification process is based on sampled 
values, it is convenient to think that the sequences under 
study are simply a period of infinite periodic succession. 
This fact justifies the application of the Discrete Fourier 
Transform (FFT).

G(jw)=FFT(g(kt)) (6)

Figure 1. Schematic of feedback system
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where L is the apparent dead-time of the process, wn 
and ζ dominate the behavior of the desired closed-loop 
response, [9]. Specifications are given as the phase margin 
Φm, and gain margin Am. The default settings for ζ and 
wnL values are =0.707 and wnL=2,  which imply that the 
overshoot of the objective set-point step response is about 
5%, the phase margin is 60° and the gain margin is 2.2 [4]. 
The open-loop transfer function corresponding to Gd   is

The controller C(jw) is designed such that the actual 
GC(jw) is fitted to the desired transfer function Gd(jw), as 
well as possible. Thus the resultant system will have the 
desired performance. The PID controller desired can be 
obtained by minimizing the objective function given from 
the sum of squared differences between computed and 
recorded frequency response points

If the PID controller is designed from G(jw+α), then

The objective function The objective function

The solution of the problem is obtained by minimizing 
y.

And G(jw+α) plot, where α=0.85, is given by Figure 4

Figure 4. Nyquist plot for G(jw+α).

2.3 Simple Genetic Algorithms

 The genetic algorithm is a useful tool to solve both 
constrained and unconstrained optimization problems that 
takes principles of biological evolution [14, 8, 19, 20-22,].  
At present work, each of the individuals in the population 
(chromosomes), contain the parameters included in the 
fitness function, as an example, in the process to tune 
the PID controller, each chromosome contains the coded 
parameters of the controller [Kp, Ki, Kd]. 

3. Applications

3.1 Tuning via frequency response fitting (PID)

     Tuning via frequency response fitting is a simple 
but efficient solution to this kind of processes, that was 
developed in [4, 15-16]. It shapes the loop frequency 
response to optimally match the desired dynamics 
over large range of frequencies. Thus the closed-loop 
performance is more firmly guaranteed than in the case of 
only one or two points PID or PI tuning laws. Suppose 
that multiple process frequency response points G(jwi), 
1=1,2,…,m, are available. The control specifications can 
be formulated as a desirable closed loop transfer function 

Figure 3. Nyquist plot for G(jw).
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Estimated model From G(jw) the design PID is

Performance of the PID designed is shown in the 
Figure 6

3.2 The sensitivity to modeling errors

 Since the controller is tuned for a particular 
process, it is desirable that the closed loop system is not 
very sensitive to variations of the process dynamics. A 
convenient way to express the sensitivity of the closed loop 
system is through the sensitivity function S(s), defined as:

where L(s) denotes the loop transfer function 
[13,22,14,16, 23]. L (s) is given by:

The maximum sensitivity (frequency response) is then 
given by                                       . Therefore Ms is given 
by   Ms= ǁS(s)ǁω . On the other hand, it is known that the 
quantity Ms, is the inverse of the shortest distance from the 
Nyquist curve of loop transfer function to the critical point 
s=-1 [13]. Typical values of Ms are in the range from 1.2 
to 2.0. 

In this work the identified points were obtained from a 
schematic Simulink® system where the system feedback 
is simulated. To solve the optimization problem, the 
MATLAB® Genetic Algorithm Optimizations Using the 
Optimization Tool GUI is used.

Example 1. Consider a model with oscillatory dynamics

The identified points for this model are showed in Fig. 
(3)-(4). In this example the apparent dead-time L=0.23, is 
proposed. 

The designed PID is solved by minimizing the equation 
11 by means of a simple genetic algorithm. The PID 
parameters are coded and arranged into each individual 
(chromosome), of population in the genetic process. 
Multiple points are from G(jw)

And from G(jw+α), the tuned PID  is

Equations (15)-(16) show that both PID’s controllers 
have very close values as might be expected.

Performance of the PID designed is shown in the 
Figure 5. The time response shows that the overshoot value 
is close of 5%, as it was proposed.

Example 2. Considerer a high order model

For this model the value of apparent dead-time of the 
process L=4.5 was proposed. The modeling error for this 
example was 0.0097%

Figure 5. Control performance for an oscillatory 
process

Figure 6. Control performance for high order model 
process.
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The objective function is

The solution of the problem is obtained by

3.3.2 Transfer function modeling from G(jw+α)

 Suppose the shifted frequency response of the 
process G(jwi+α), i=1,2,…,M  is available, because they 
are required to be fitted into G(s) in (19) such that 

Where i=1,2,…,M;   
then

The objective function is

The solution of the problem is obtained by

Example 3
 Table 2 shows five model in order to apply 

the proposed method. Table 3 shows the results of five 
examples that were proposed to obtain the identified 
models from multiple points from G(jw) and G(jw+α).

Table 1 shows the values of Ms, Am and Φm for both 
presented examples, model with oscillatory dynamics and 
high order model.

The operation of genetic algorithm was configured 
with the following parameter values:

• Population size: 100.
• Stochastic uniform Selection 
• Crossover function: Scattered
• Mutation function: Gaussian
• Number of generation: 500
• Crossover probability: 0.8
• Mutation Probability: 0.09
• Elite count: 2 

3.3 Transfer Function modeling

    A transfer function model is necessary in many 
applications of automatic control. In this work a second 
order plus dead-time model is proposed.  The identification 
at models with dead-time is usually a non-linear problem 
[4, 8, 23]. This characteristic presents a good opportunity 
to apply a genetic algorithm to solve the problem.  

Which can represent both monotonic and oscillatory 
processes.

3.3.1 Transfer function modeling from G(jw)

      Suppose the process frequency response G(jwi), 
i=1,2,…,M  is available, because they are required to be 
fitted into G(s) in (19) such that 

Where i=1,2,…,M  

then



Programación Matemática y Software (2017) 9(1): 44-53. ISSN: 2007-3283

50

In this example, the number of generations and 
Population size used for genetic algorithm are: 1500 and 
100 respectably.

3.5 Transfer function modeling for integrating 
Processes with dead-time.

 Integrating processes with dead-time can be 
adequately approximated by a model in form of SOPDT 
model, there is a commonly studied in the literature.

Example 5
 Consider an integrating process plus a long dead-time 

[9]

The identified model is given in Eq. (30). It was 
obtained by the same method as was presented previously. 
Figure 8 shows the identified points on the Nyquist curve 
from G(jw+α).

The estimated models were solved by minimizing the 
Equations (22) and (25) by means of a simple genetic 
algorithm. The Identified model parameters [a, b, c], are 
coded and arranged into each individual (chromosome), of 
population in the genetic process.

3.4 Transfer function modeling for Processes with long 
dead-time.

Processes with long dead-time are present in most of the 
industrial processes and can be adequately approximated 
by a model in form of

Example 4 
Consider a high vacuum distillation column which is a 

typical long dead-time process [9]

The identified model is given in Eq. (28). It was 
obtained by the same method as was presented previously. 
Figure 7 shows the identified points on the Nyquist curve 
from G(jw+α).

Figure 7. Nyquist plot for G(jw+α).

Figure 8. Nyquist plot for G(jw+α).
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4. Conclusions

The genetic algorithm was an excellent tool to solve 
the optimization problem. It was very important that same 
methodology can be used for both cases: PID tuning 
and transfer function modeling. In both applications, the 
results obtained were more accurate from the identified 
points of G(jwi+α) to G(jwi); It was due to the fact that 
using G(jwi+α) is more direct than G(jwi). Nonlinear least 
squares method, was successfully applied in all cases to 
adjust the parameters values in order to reduce the sum 
of the squares of the errors between the function and the 
measured data points. It is remarkable to say that used 
method has a good performance to identify both models: 
very long dead time process and integrating process, 
proposed in Examples 4 and 5 respectively, no matter 
which use a different structure to that of the other cases. 

It is also important to mention that Ms value was 
always a referent in relation to a good performance of 
the designed PID’s, especially at the relative stability; 
on the other hand, when the Ms Value is within the 
proposed range, this ensures that the controlled systems 
are insensitive to possible changes in plant models [1]. So 
it, the values of Gain Margin and Phase Margin were very 
close as expected.

 On the other hand, with regard to the convergence 
of the genetic algorithm, it is known that in practice 
there is no way to know whether it has reached or not 
to the optimal solution (that applies any GA). A possible 
stopping criterion is the consecutive lack of new solutions 
that dominate the ones which are better up to the moment. 
If there is no progress after a certain number of iterations, 
it is reasonable to assume that the algorithm converged 
already, but obviously there is no guarantee of that. This is 
the handicap of heuristic strategies.
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