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Resumen. En éste trabajo se proponen dos técnicas novedosas para la iluminación 3D por 
computadora en tiempo real utilizando tarjetas de video (GPU). Las técnicas clásicas de iluminación 
como la reflexión especular Phong, son pesadas computacionalmente cuando se ejecutan en 
dispositivos con poco poder provocando mal desempeño en tiempo real y reduciendo el tiempo de 
vida de las baterías. Las alternativas propuestas son definidas en términos más simples, pero aún así 
producen resultados similares a las técnicas clásicas. Se proporcionan resultados de varios 
experimentos realizados con las técnicas propuestas corriendo tanto en el CPU como en el GPU. Los 
resultados de los indicadores de desempeño muestran que las técnicas propuestas aceleran el 
desempeño significativamente en dispositivos de bajo perfil. Los experimentos se realizaron en 
diversas computadoras analizando tanto plataformas 32-bit como 64-bit utilizando enfoques en un 
procesador así como multi-procesador para evaluar su rendimiento adecuadamente. 
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Abstract. In this work two novel techniques are proposed for 3D lighting computed in real-time on 
dedicated video hardware (GPU). Classical techniques such as Phong specular reflections are 
computationally heavy when executed on budget hardware, performing poorly in real-time and 
reducing battery life. The proposed alternatives are defined in simpler terms yet produce realistically 
looking results similar to the classical techniques. Numerous experiments are provided implementing 
the proposed techniques in hardware running both on GPU and CPU. The provided performance 
benchmarks show that the proposed techniques boost the performance significantly on budget 
equipment. The experiments were made on many different computers both on 32-bit and 64-bit 
platforms using single-threaded and multi-threaded approaches to evaluate the real-time performance 
accurately. 
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1 Introduction 
 

In computer software applications where 

interactive 3D scenes are rendered it is 

common to work with shaders running directly 

on the dedicated video hardware, specifically 

the graphics processing unit (GPU). Such 

applications include but not limited to video 

games, interactive simulations, entertainment, 

scientific experiments and medical support. In 

many cases the budget is limited so the 

applications must scale to hardware with 

different processing power, starting from 

budget mobile netbooks to powerful high-end 

workstations. In addition, every attempt is 

made in the applications to produce the 3D as 

much realistically looking as possible. In fact, 

in the movie industry a large set of high-end 

computer stations is used to create computer-

generated video frames, a process which can 

take from few minutes to several days. In the 

video game industry, an application is 

commonly run on a personal computer or 

dedicated hardware (such as gaming console) 

that has limited computational capabilities. 

During the last few years the computer 

industry evolved to assist these applications 

with powerful GPUs capable of doing heavy 

computations so that more complex 3D scenes 

can be rendered as fast as possible yet looking 

closely to the reality. 

The rendering of 3D scenes is commonly 

made by using one of the two popular 

technologies, or APIs – Direct3D provided by 

Microsoft [1] and OpenGL managed by 

Khronos Group [2]. In earlier years the 

rendering process was implemented in the 

majority by each of the APIs and the 

underlying hardware, but now it is possible to 

customize the rendering using shaders that are 

executed directly on GPU. In this work, high-

level shading language (HLSL) was used, a 

proprietary shader language developed by 

Microsoft for use with Direct3D API. OpenGL 

has similar technology called GLSL. Although 

shaders written in HLSL for Direct3D can be 

ported to GLSL, the process is not covered in 

this work. 

In typical 3D lighting approaches, the 

resulting color is produced by a sum of two (or 

more) components, including diffuse term and 

specular reflection, typically calculated as in 

Phong or in Blinn-Phong shading models [1], 

[3-4]. In the calculations RGB color space is 

typically involved (some other color spaces are 

covered in [5-8]), although other 

implementations have been proposed [9-10]. 

The calculation of traditional diffuse lighting 

and specular reflections is one of the most 

popular techniques used in the industry. 

1.1   The diffuse and specular reflection 

The diffuse lighting technique simulates 

materials such as matte that appear equally 

bright when viewed from any angle because 

the light is scattered in many directions from 

the surface so the viewed brightness is only 

related to the angle between the light’s source 

and the surface normal. In the case of specular 

reflection, which simulates metallic and shiny 

materials, the viewed brightness changes 

depending on the viewer’s position respective 

to the object and the light’s origin. The 

difference between the two is illustrated on the 

figure below. 

It can be observed on the Figure 1 that the 

diffuse lighting assumes the scattering of the 
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light while for specular reflections most of the 

light’s energy is transferred to the observer. 

The geometry of specular reflections is similar 

to the one of the mirror, bounds to few basic 

rules as shown on Figure 2. First, the incident 

ray and the reflected ray are always located on 

the same plane; independently of the incident 

surface be it plane or a curved one, the point 

where the incident ray hits is uniquely defined 

as it can be seen below. The angle of light’s 

ray incidence and the angle of reflections are 

equal. 

 

 

Figure 1. (a) A rough surface reflects light 

diffusely (b) A plane surface produces specular 

reflection. 

 

Figure 2. (a) Geometry of reflection on a 

planar surface (b) Geometry of reflection on a 

curved surface. 

The implementation of shaders for diffuse 

lighting and specular reflections is discussed in 

great detail in the popular literature (e.g. [1] 

and [3]), commonly denoted as Phong lighting 

technique, although other lighting techniques 

exist [4].  

2 “Fake” specular technique 

In this novel lighting technique the resulting 

colors can be calculated for each individual 

vertex of the given 3D mesh inside vertex 

shader, or for each individual pixel in the pixel 

shader. In the context of this work the lighting 

calculations will be calculated for every pixel 

as in typical 3D shader applications. In this 

configuration the components such as vertex 

position and vertex normal are interpolated for 

each pixel. The first step in the lighting 

technique is to calculate the incident angle 

between the light and the surface it hits: 

 WNL


 0arccos  (1)  

where 0L


 is the light direction and WN


is the 

interpolated surface normal transformed into 

world space. If the light source is defined as 

point light (or “omni light”), the light direction 

can be calculated as: 

WPPL


 00  (2)  

where 0P


 is the light’s position in world space 

and WP


 is the interpolated surface position 

transformed into world space. The resulting 
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light vector is normalized to make sure it is a 

unity vector. The angle described earlier 

assumes that the normal vector is also 

normalized. The diffuse component in this 

lighting technique can therefore be calculated 

as the following:  













 


2

2saturate




termD  (3)  

where saturate() is a function in HLSL that 

clamps the result in [0, 1] range and is usually 

optimized for performance when the shader 

code is compiled to shader assembly. The 

diffuse color component can be calculated as: 

    termD DbgrCbgrC  ,,,, in  (4)  

where Cin is the source interpolated color 

either taken from the vertex or sampled from 

the texture. The fake specular reflection 

component is calculated using the same angle 

α as the following: 












 0

0

1
saturate k

p
Sterm


 (5)  

where p0 is the apparent reflection strength 

and k0 is the strength adjustment parameter; 

both parameters are calibrated to produce the 

desired result that resembles Phong specular 

reflection. In the context of this work, the 

parameters were chosen as p0=0.2 and k0=0.5. 

The final color component can be calculated 

as: 

    termfinal SbgrCbgrC  ,,,, D  (6)  

It is important to note that this lighting 

technique works directly with angles between 

the surfaces and not the dot product itself as in 

the case of classical diffuse lighting and Phong 

reflections. This may impact performance to a 

lesser degree because of arccosine calculation 

but the result is more accurate. 

3 Fast “Fake” specular technique 

It was mentioned earlier that the proposed 

lighting technique is more accurate in diffuse 

component because it works with angles 

between the surfaces as opposed to raw dot 

product found in many classical lighting 

techniques. For the sake of performance the 

arccosine in the calculation can be dropped 

and the entire process can be made using dot 

products instead. The new diffuse component 

is calculated as: 

 WNLP


 00 saturate  (7)  

The diffuse color component is therefore 

calculated as: 

    0in

' ,,,, PbgrCbgrCD   (8)  

It can be seen in the above equation that it is 

similar to how diffuse component is calculated 

in the classical techniques. The fake specular 

component can be calculated in two steps: 

      20 ,5.0max 0

'

0 PP  (9)  

where 
'

0P  is adjusted lighting component, max 

is the function that returns the maximum of two 

values in HLSL and γ’ is an alpha calibration 

component that is used to tune up the 

produced result so it roughly matches the more 

accurate lighting version described earlier. In 
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the context of this work, γ’=0.9. The new 

specular component can be calculated as: 

















 0'

0

0'

1
saturate k

P

p
Sterm

 (10)  

The final color equation simply combines the 

newly introduced components: 

    ''' ,,,, termDfinal SbgrCbgrC   (11)  

It is evident that this technique is very simple in 

mathematical terms and can be calculated with 

minimal effort on GPU.  

4 Experimental Results 

The lighting techniques described earlier were 

subject to numerous experiments with 

throughout performance benchmarks. In the 

experiments many different computers were 

used ranging from ultra-mobile netbooks to 

high-performance workstations. The 

specification of all testing machines is provided 

on Table 1. 

Machine Machine Specification 

Eee8G Asus Eee PC 8G, Intel Celeron 630 

Mhz, DDR2-570 Mhz, Intel GMA900 

Eee10HE Asus Eee PC 1000HE, Intel Atom N280 

1.66 Ghz, DDR2-667 Mhz, Intel 

GMA950 

Eee15PN Asus Eee PC 1015PN, Intel Atom N570 

1.66 Ghz, DDR3-1333 Mhz, Intel GMA 

3150 

Eee15PNi Asus Eee PC 1015PN, Intel Atom N570 

1.66Ghz, DDR3-1333Mhz, Nvidia ION2 

LatD830 Dell Latitude D830, Intel Core 2 Duo 

T7700 2.4 Ghz, DDR2-667 Mhz, Intel 

GMA X3100 

Vost1500 Dell Vostro 1500, Intel Core 2 Duo 

T7250 2.0 Ghz, DDR2-667 Mhz, Nvidia 

Geforce 8600 GT 

Prec4500 Dell Precision M4500, Intel Core i7 

Q840 1.86 Ghz, DDR3-1333 Mhz, 

Nvidia Quadro FX 1800 

Cor2-18 Desktop Core 2 Duo E6300 DDR3-

1066Mhz, 1.86Ghz, Nvidia Geforce 

7600GS 

Cor4-24 Desktop Core 2 Quad Q6600 2.4 Ghz, 

DDR2-800, Nvidia Geforce 250 GTS 

Cor4-25 Desktop Core 2 Quad Q8300 2.5 Ghz, 

DDR2-1333, ATI Radeon HD 4870 

MacMin Apple Mac Mini Core 2 Duo 2.0 Ghz, 

DDR2-667, Nvidia Geforce 9300 GS 

Cel1200 Desktop Celeron Dual-Core E1200 1.6 

Ghz, DDR2-667, Intel GMA X3100 

Stu1535 Dell Studio 1535, Core 2 Duo T5800 

2.0 Ghz, DDR2-800, Intel GMA X3100 

DvT4200 HP Pavilion DV4 , Pentium Dual-Core 

T4200 2.0 Ghz, DDR3-1066, GMA 

4500M 

Table 1. The specification of all testing 

machines with their abbreviations that are used 

as references in the experimental result tables. 

Three different applications were used in the 

experiments. The first one used HLSL shaders 

for rendering P-Q Torus Knot [11] filled with a 

single diffuse color (no texturing); the model 

has 16929 vertices and 32768 faces. The 

resolution of the rendered image was 512x512 

with 8x multisampling, if supported by a certain 

video card. The model was chosen so that the 

polygon count is low and the vertex shader will 

contribute little to the performance 

benchmarks. The shape of the model is also 

important as it can illustrate the shading from 

many different angles. The same model was 

used with three different pixel shaders 

illustrating the two proposed lighting 
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techniques and the classical Phong 

implementation. 

 

 

 

Figure 3. P-Q (7-4) Torus Knot rendered using 

a) Phong reflections, b) “Fake” specular and c) 

Fast “fake” specular. 

From the images on ¡Error! No se 

encuentra el origen de la referencia. it can 

be seen that although the general location of 

the specular reflection is different, all three 

images look similarly shining and produce an 

illusion of metallic look. Should an unprepared 

viewer watch each of these images, it would 

be difficult if not impossible to realize whether 

or not the real Phong shading is being used. In 

addition, it is important to note that the diffuse 

lighting used in “Fake” specular produces 

higher contrast and more metallic look; as it 

was mentioned earlier, the “Fake” specular 

uses more accurate diffuse approach. 

Machine Phong 

reflections 

"Fake" 

specular 

Fast 

"fake" 

specular 

Eee8G 33 30 49 

Eee10HE 58 53 75 

Eee15PN 73 65 95 

Eee15PNi 78 88 102 

LatD830 65 94 123 

Vost1500 180 183 182 

Prec4500 406 402 406 

Cor2-18 264 232 287 

Cor4-24 1028 1032 1032 

Cor4-25 1655 1654 1657 

Cel1200 95 91 109 

Stu1535 52 72 96 

DvT4200 105 105 127 

Minimal Benefit 88% 100% 

Maximum Benefit 145% 189% 

Average Benefit 104% 128% 

Table 2. Performance benchmarks for the first 

application with different shading techniques 

running directly on GPU using shaders. The 

values are specified in frames per second. 

As it can be seen from the results on Table 2, 

the computers having weaker and cheaper 

video cards are in greater benefit of the 

proposed alternatives, while high-end video 

cards have little benefit. In some cases, up to 

89% increase in performance is observed 

when using the fast “fake” specular technique. 
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In the second application, the different 

lighting techniques were implemented in a 

more advanced approach: per-pixel bump 

mapping in shaders. In this approach, a 

different P-Q Torus Knot model was rendered 

textured using brick-shaped metallic texture.  

The model has 10593 vertices and 20480 

faces, again being few polygons so that the 

majority of work is made in pixel shader. The 

rendered image resolution was 512x512 with 

8x multisampling. On desktop machines the 

960x960 resolution was used instead. The 

resulting rendering is shown below. 

 

 

 

Figure 4. P-Q (3-4) Torus Knot rendered using 

per-pixel bump mapping with a) Phong 

reflections, b) “Fake” specular and c) Fast 

“fake” specular. 

From the images on Figure 4 it can be seen 

that the proposed techniques produce 

realistically looking results which to an 

inexperienced viewer make look the same. 

The performance, however, when using the 

proposed techniques is a different story. It can 

be noted that the “fake” specular technique, 

which uses more accurate diffuse shading 

produces image with higher contrast and more 

metallic look. The performance results are 

shown below. 

Machine Phong 

reflections 

"Fake" 

specular 

Fast 

"fake" 

specular 

Eee8G 41 41 44 

Eee10HE 71 67 83 

Eee15PN 93 88 112 

Eee15PNi 126 140 148 

LatD830 110 141 154 

Vost1500 256 252 256 

Prec4500 633 633 636 

Cor2-18 135 134 136 

Cor4-24 626 625 626 

Cor4-25 1448 1446 1450 

Cel1200 102 101 105 

Stu1535 85 113 123 

DvT4200 191 185 204 

Minimal Benefit 94% 100% 

Maximum Benefit 133% 145% 

Average Benefit 104% 112% 

Table 3. Performance benchmarks for the 

second application with different shading 

techniques running directly on GPU using 

shaders illustrating per-pixel bump mapping. 

The values are specified in frames per second. 
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It can be seen from the results on Table 3 that 

the proposed techniques produce better real-

time performance in more complex situations 

as well. The benefit margin is smaller because 

more weight is put on pixel shaders by 

sampling the texture and calculating bump-

mapping parameters. Still, the majority of low-

end to mid-end video cards benefit from the 

proposed techniques with up to 45% increase 

in performance. 

The previous two applications were 

executed in shaders running directly on GPU. 

However, in certain mobile devices the GPU 

acceleration is not available. Therefore, in the 

last application the different lighting techniques 

were implemented in software running directly 

on computer’s CPU. The application was 

compiled in Embarcadero Delphi XE 2 with 

compiler optimizations enabled and all 

debugging information disabled. In total four 

different approaches were used: 1) single-

threaded approach on 32-bit platform, 2) 

single-threaded approach on 64-bit platform, 3) 

multi-threaded approach on 32-bit platform and 

3) multi-threaded approach on 64-bit platform. 

In the single-threaded approaches, the 

program calculated the final color for one 

million vertices. In the multi-threaded 

approaches, the program calculated the final 

color for a million of vertices in each of the 64 

threads that were run simultaneously. The 

execution time was evaluated for each 

instance. The benchmarking results for single-

threaded variant are shown below. 

 

 

 

 

 

 

 

Machine 

32-bit 

Phong 

reflections 

"Fake" 

specular 

Fast 

"fake" 

specular 

Eee8G 881.34 707.47 328.30 

Eee10HE 868.73 507.57 244.23 

Eee15PN 849.42 491.10 243.94 

Eee15PNi 201.40 176.61 69.07 

LatD830 263.24 217.16 88.05 

Vost1500 140.47 120.18 55.65 

Prec4500 268.80 242.17 94.14 

Cor2-18 231.57 193.50 78.85 

Cor4-24 158.84 146.39 64.91 

Cor4-25 277.22 203.90 102.20 

Cel1200 348.14 313.85 117.62 

Stu1535 471.05 392.97 163.30 

DvT4200 381.52 317.84 150.23 

Minimal Benefit 109% 245% 

Maximum Benefit 173% 356% 

Average Benefit 127% 288% 

 

Machine 

64-bit 

Phong 

reflections 

"Fake" 

specular 

Fast 

"fake" 

specular 

LatD830 154.61 185.35 46.77 

Prec4500 92.33 103.50 36.50 

Cor4-24 163.13 195.46 49.68 

Cor4-25 125.73 150.23 41.39 

Stu1535 327.30 393.72 98.94 

Minimal Benefit 83% 253% 

Maximum Benefit 89% 331% 

Average Benefit 85% 309% 

Table 4. Performance benchmarks running 

single-threaded lighting techniques for million 

pixels on 32-bit and 64-bit platforms. The data 
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values are specified in milliseconds indicating 

the total execution time of experiment. 

The results shown on Table 4 illustrate the 

performance increase with the proposed 

techniques. It is evident that in some cases the 

performance is increased dramatically 

(sometimes three times faster and more!) by 

using one of the proposed lighting techniques. 

An interesting observation is that on 64-bit 

platform the “fake” specular technique seems 

slower, most likely due to arccosine function 

being the bottleneck.  The above table can be 

used as a performance benchmark of different 

CPUs when used in single-threaded mode. 

However, for a more objective study it is 

important to use multi-threading capabilities of 

CPUs, which over past few years have grown 

substantially. The results for multi-threaded 

approach are shown below. 

Machine 

32-bit 

Phong 

reflections 

"Fake" 

specular 

Fast 

"fake" 

specular 

Eee8G 929.46 713.46 339.17 

Eee10HE 555.89 298.64 166.40 

Eee15PN 282.22 157.67 85.28 

Eee15PNi 107.71 97.29 41.41 

LatD830 133.89 113.36 50.03 

Vost1500 50.14 39.07 24.82 

Prec4500 144.82 125.96 50.48 

Cor2-18 56.99 49.08 24.20 

Cor4-24 41.19 37.34 24.49 

Cor4-25 141.10 105.48 55.13 

Cel1200 165.85 141.23 58.21 

Stu1535 223.57 198.16 81.70 

DvT4200 177.95 157.82 72.66 

Minimal Benefit 110% 168% 

Maximum Benefit 186% 334% 

Average Benefit 129% 263% 

 

 

Machine 

64-bit 

Phong 

reflections 

"Fake" 

specular 

Fast 

"fake" 

specular 

LatD830 82.85 100.03 26.30 

Prec4500 33.58 36.67 16.54 

Cor4-24 46.84 56.92 16.14 

Cor4-25 32.79 39.56 16.00 

Stu1535 169.87 203.63 55.30 

Minimal Benefit 82% 203% 

Maximum Benefit 92% 315% 

Average Benefit 85% 264% 

Table 5. Performance benchmarks running 

multi-threaded lighting techniques for million 

pixels in each thread on 32-bit and 64-bit 

platforms. The total number of threads was 64. 

The data values are specified in milliseconds 

indicating the total execution time of 

experimental. 

As it can be seen on Table 5, the performance 

increase from using the proposed techniques 

is also significant when multi-threading is used, 

although to a lesser degree (most likely due to 

cache contamination on CPUs with small 

cache). It is also important to note that multi-

threading greatly increases the performance in 

some cases. The above table can also be 

used as a definitive performance guide to each 

of the individual CPUs. For instance, from the 

table it can be seen that Core i7 Q840 can 

illuminate 62.5 million vertices (or pixels) using 

fast “fake” technique per second on 64-bit 

platform; in other words, filling the entire 

1024x768 screen (and calculating the fast 

“fake” lighting for each pixel) it can achieve 

rendering speed of 794 frames per second 

using multiple threads. 
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5 Conclusions and future work 

In this work several alternatives were proposed 

to the classical lighting techniques. The 

performance achieved with the proposed 

lighting techniques is significantly higher both 

on GPU and on CPU with the similar perceived 

results. Although the proposed techniques are 

not a full replacement to high quality specular 

reflections using traditional approaches, they 

can be used for performance-critical 

applications and video games running on 

budget hardware. The proposed “fake” 

specular lighting produces diffuse-lit colors that 

are more accurate than in the traditional 

lighting techniques; although somewhat slower 

in some special circumstances (such as on 64-

bit CPUs) and faster in others (GPU, 32-bit 

CPUs) it produces realistic results. The fast 

“fake” lighting technique is drastically faster 

than the traditional Phong technique. A special 

LOD-based approach can be used to mix both 

one of the proposed alternatives and the 

classical Phong technique for a hybrid 

approach where distant objects use faster 

alternative and closer objects are rendered 

with a slower classical technique. In the 

majority of cases it is difficult to determine 

visually for an inexperienced viewer that the 

used technique is not a true Phong reflection; 

the only way to figure it out would be looking at 

the light’s origin and then at object to see that 

the reflection actually goes back to the light’s 

origin. The last issue can be possibly mediated 

by using two light origins per single light, one 

being the original position for diffuse 

component while another being calculated as 

the average between the viewer and light’s 

origin to be used for specular component, 

simulating the moving reflection.  
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