
Programación Matemática y Software (2012) (4)1: 24-34. ISSN: 2007-3283

Progmat,2012,4,1; http://www.progmat.uaem.mx http://dx.doi.org/10.30973/progmat/2012.4.1/3

Recibido: 3 de octubre del 2011 Aceptado: 12 de enero del 2012

Publicado en línea: 15 de junio del 2012

Alternative Specular Approach for real-time rendering optimized
for higher performance

Yuriy Kotsarenko, Humberto Andrade, Fernando Ramos,
ITESM Cuernavaca Morelos, México

ykot@inbox.com, humberto.andrade@gmail.com, fernando.ramos@itesm.mx

Resumen. En éste trabajo se proponen dos técnicas novedosas para la iluminación 3D por
computadora en tiempo real utilizando tarjetas de video (GPU). Las técnicas clásicas de iluminación
como la reflexión especular Phong, son pesadas computacionalmente cuando se ejecutan en
dispositivos con poco poder provocando mal desempeño en tiempo real y reduciendo el tiempo de
vida de las baterías. Las alternativas propuestas son definidas en términos más simples, pero aún así
producen resultados similares a las técnicas clásicas. Se proporcionan resultados de varios
experimentos realizados con las técnicas propuestas corriendo tanto en el CPU como en el GPU. Los
resultados de los indicadores de desempeño muestran que las técnicas propuestas aceleran el
desempeño significativamente en dispositivos de bajo perfil. Los experimentos se realizaron en
diversas computadoras analizando tanto plataformas 32-bit como 64-bit utilizando enfoques en un
procesador así como multi-procesador para evaluar su rendimiento adecuadamente.

Palabras clave: iluminación 3D, iluminación tiempo-real, reflexión especular, programación GPU,

plataformas 64-bit, multi-procesador.

Abstract. In this work two novel techniques are proposed for 3D lighting computed in real-time on
dedicated video hardware (GPU). Classical techniques such as Phong specular reflections are
computationally heavy when executed on budget hardware, performing poorly in real-time and
reducing battery life. The proposed alternatives are defined in simpler terms yet produce realistically
looking results similar to the classical techniques. Numerous experiments are provided implementing
the proposed techniques in hardware running both on GPU and CPU. The provided performance
benchmarks show that the proposed techniques boost the performance significantly on budget
equipment. The experiments were made on many different computers both on 32-bit and 64-bit
platforms using single-threaded and multi-threaded approaches to evaluate the real-time performance
accurately.

Keywords: 3D lighting, real-time illumination, specular reflections, GPU programming, 64-bit platform,

multi-threading.

mailto:ykot@inbox.com
mailto:humberto.andrade@gmail.com
mailto:fernando.ramos@itesm.mx

25 Yuriy Kotsarenko, Humberto Andrade, Fernando Ramos

1 Introduction

In computer software applications where

interactive 3D scenes are rendered it is

common to work with shaders running directly

on the dedicated video hardware, specifically

the graphics processing unit (GPU). Such

applications include but not limited to video

games, interactive simulations, entertainment,

scientific experiments and medical support. In

many cases the budget is limited so the

applications must scale to hardware with

different processing power, starting from

budget mobile netbooks to powerful high-end

workstations. In addition, every attempt is

made in the applications to produce the 3D as

much realistically looking as possible. In fact,

in the movie industry a large set of high-end

computer stations is used to create computer-

generated video frames, a process which can

take from few minutes to several days. In the

video game industry, an application is

commonly run on a personal computer or

dedicated hardware (such as gaming console)

that has limited computational capabilities.

During the last few years the computer

industry evolved to assist these applications

with powerful GPUs capable of doing heavy

computations so that more complex 3D scenes

can be rendered as fast as possible yet looking

closely to the reality.

The rendering of 3D scenes is commonly

made by using one of the two popular

technologies, or APIs – Direct3D provided by

Microsoft [1] and OpenGL managed by

Khronos Group [2]. In earlier years the

rendering process was implemented in the

majority by each of the APIs and the

underlying hardware, but now it is possible to

customize the rendering using shaders that are

executed directly on GPU. In this work, high-

level shading language (HLSL) was used, a

proprietary shader language developed by

Microsoft for use with Direct3D API. OpenGL

has similar technology called GLSL. Although

shaders written in HLSL for Direct3D can be

ported to GLSL, the process is not covered in

this work.

In typical 3D lighting approaches, the

resulting color is produced by a sum of two (or

more) components, including diffuse term and

specular reflection, typically calculated as in

Phong or in Blinn-Phong shading models [1],

[3-4]. In the calculations RGB color space is

typically involved (some other color spaces are

covered in [5-8]), although other

implementations have been proposed [9-10].

The calculation of traditional diffuse lighting

and specular reflections is one of the most

popular techniques used in the industry.

1.1 The diffuse and specular reflection

The diffuse lighting technique simulates

materials such as matte that appear equally

bright when viewed from any angle because

the light is scattered in many directions from

the surface so the viewed brightness is only

related to the angle between the light’s source

and the surface normal. In the case of specular

reflection, which simulates metallic and shiny

materials, the viewed brightness changes

depending on the viewer’s position respective

to the object and the light’s origin. The

difference between the two is illustrated on the

figure below.

It can be observed on the Figure 1 that the

diffuse lighting assumes the scattering of the

Alternative Specular Approach for real-time rendering optimized for higher performance 26

light while for specular reflections most of the

light’s energy is transferred to the observer.

The geometry of specular reflections is similar

to the one of the mirror, bounds to few basic

rules as shown on Figure 2. First, the incident

ray and the reflected ray are always located on

the same plane; independently of the incident

surface be it plane or a curved one, the point

where the incident ray hits is uniquely defined

as it can be seen below. The angle of light’s

ray incidence and the angle of reflections are

equal.

Figure 1. (a) A rough surface reflects light

diffusely (b) A plane surface produces specular

reflection.

Figure 2. (a) Geometry of reflection on a

planar surface (b) Geometry of reflection on a

curved surface.

The implementation of shaders for diffuse

lighting and specular reflections is discussed in

great detail in the popular literature (e.g. [1]

and [3]), commonly denoted as Phong lighting

technique, although other lighting techniques

exist [4].

2 “Fake” specular technique

In this novel lighting technique the resulting

colors can be calculated for each individual

vertex of the given 3D mesh inside vertex

shader, or for each individual pixel in the pixel

shader. In the context of this work the lighting

calculations will be calculated for every pixel

as in typical 3D shader applications. In this

configuration the components such as vertex

position and vertex normal are interpolated for

each pixel. The first step in the lighting

technique is to calculate the incident angle

between the light and the surface it hits:

 WNL


 0arccos (1)

where 0L


 is the light direction and WN


is the

interpolated surface normal transformed into

world space. If the light source is defined as

point light (or “omni light”), the light direction

can be calculated as:

WPPL


 00 (2)

where 0P


 is the light’s position in world space

and WP


 is the interpolated surface position

transformed into world space. The resulting

27 Yuriy Kotsarenko, Humberto Andrade, Fernando Ramos

light vector is normalized to make sure it is a

unity vector. The angle described earlier

assumes that the normal vector is also

normalized. The diffuse component in this

lighting technique can therefore be calculated

as the following:













 


2

2saturate




termD (3)

where saturate() is a function in HLSL that

clamps the result in [0, 1] range and is usually

optimized for performance when the shader

code is compiled to shader assembly. The

diffuse color component can be calculated as:

    termD DbgrCbgrC  ,,,, in (4)

where Cin is the source interpolated color

either taken from the vertex or sampled from

the texture. The fake specular reflection

component is calculated using the same angle

α as the following:












 0

0

1
saturate k

p
Sterm


 (5)

where p0 is the apparent reflection strength

and k0 is the strength adjustment parameter;

both parameters are calibrated to produce the

desired result that resembles Phong specular

reflection. In the context of this work, the

parameters were chosen as p0=0.2 and k0=0.5.

The final color component can be calculated

as:

    termfinal SbgrCbgrC  ,,,, D (6)

It is important to note that this lighting

technique works directly with angles between

the surfaces and not the dot product itself as in

the case of classical diffuse lighting and Phong

reflections. This may impact performance to a

lesser degree because of arccosine calculation

but the result is more accurate.

3 Fast “Fake” specular technique

It was mentioned earlier that the proposed

lighting technique is more accurate in diffuse

component because it works with angles

between the surfaces as opposed to raw dot

product found in many classical lighting

techniques. For the sake of performance the

arccosine in the calculation can be dropped

and the entire process can be made using dot

products instead. The new diffuse component

is calculated as:

 WNLP


 00 saturate (7)

The diffuse color component is therefore

calculated as:

    0in

' ,,,, PbgrCbgrCD  (8)

It can be seen in the above equation that it is

similar to how diffuse component is calculated

in the classical techniques. The fake specular

component can be calculated in two steps:

      20 ,5.0max 0

'

0 PP (9)

where
'

0P is adjusted lighting component, max

is the function that returns the maximum of two

values in HLSL and γ’ is an alpha calibration

component that is used to tune up the

produced result so it roughly matches the more

accurate lighting version described earlier. In

Alternative Specular Approach for real-time rendering optimized for higher performance 28

the context of this work, γ’=0.9. The new

specular component can be calculated as:

















 0'

0

0'

1
saturate k

P

p
Sterm

 (10)

The final color equation simply combines the

newly introduced components:

    ''' ,,,, termDfinal SbgrCbgrC  (11)

It is evident that this technique is very simple in

mathematical terms and can be calculated with

minimal effort on GPU.

4 Experimental Results

The lighting techniques described earlier were

subject to numerous experiments with

throughout performance benchmarks. In the

experiments many different computers were

used ranging from ultra-mobile netbooks to

high-performance workstations. The

specification of all testing machines is provided

on Table 1.

Machine Machine Specification

Eee8G Asus Eee PC 8G, Intel Celeron 630

Mhz, DDR2-570 Mhz, Intel GMA900

Eee10HE Asus Eee PC 1000HE, Intel Atom N280

1.66 Ghz, DDR2-667 Mhz, Intel

GMA950

Eee15PN Asus Eee PC 1015PN, Intel Atom N570

1.66 Ghz, DDR3-1333 Mhz, Intel GMA

3150

Eee15PNi Asus Eee PC 1015PN, Intel Atom N570

1.66Ghz, DDR3-1333Mhz, Nvidia ION2

LatD830 Dell Latitude D830, Intel Core 2 Duo

T7700 2.4 Ghz, DDR2-667 Mhz, Intel

GMA X3100

Vost1500 Dell Vostro 1500, Intel Core 2 Duo

T7250 2.0 Ghz, DDR2-667 Mhz, Nvidia

Geforce 8600 GT

Prec4500 Dell Precision M4500, Intel Core i7

Q840 1.86 Ghz, DDR3-1333 Mhz,

Nvidia Quadro FX 1800

Cor2-18 Desktop Core 2 Duo E6300 DDR3-

1066Mhz, 1.86Ghz, Nvidia Geforce

7600GS

Cor4-24 Desktop Core 2 Quad Q6600 2.4 Ghz,

DDR2-800, Nvidia Geforce 250 GTS

Cor4-25 Desktop Core 2 Quad Q8300 2.5 Ghz,

DDR2-1333, ATI Radeon HD 4870

MacMin Apple Mac Mini Core 2 Duo 2.0 Ghz,

DDR2-667, Nvidia Geforce 9300 GS

Cel1200 Desktop Celeron Dual-Core E1200 1.6

Ghz, DDR2-667, Intel GMA X3100

Stu1535 Dell Studio 1535, Core 2 Duo T5800

2.0 Ghz, DDR2-800, Intel GMA X3100

DvT4200 HP Pavilion DV4 , Pentium Dual-Core

T4200 2.0 Ghz, DDR3-1066, GMA

4500M

Table 1. The specification of all testing

machines with their abbreviations that are used

as references in the experimental result tables.

Three different applications were used in the

experiments. The first one used HLSL shaders

for rendering P-Q Torus Knot [11] filled with a

single diffuse color (no texturing); the model

has 16929 vertices and 32768 faces. The

resolution of the rendered image was 512x512

with 8x multisampling, if supported by a certain

video card. The model was chosen so that the

polygon count is low and the vertex shader will

contribute little to the performance

benchmarks. The shape of the model is also

important as it can illustrate the shading from

many different angles. The same model was

used with three different pixel shaders

illustrating the two proposed lighting

29 Yuriy Kotsarenko, Humberto Andrade, Fernando Ramos

techniques and the classical Phong

implementation.

Figure 3. P-Q (7-4) Torus Knot rendered using

a) Phong reflections, b) “Fake” specular and c)

Fast “fake” specular.

From the images on ¡Error! No se

encuentra el origen de la referencia. it can

be seen that although the general location of

the specular reflection is different, all three

images look similarly shining and produce an

illusion of metallic look. Should an unprepared

viewer watch each of these images, it would

be difficult if not impossible to realize whether

or not the real Phong shading is being used. In

addition, it is important to note that the diffuse

lighting used in “Fake” specular produces

higher contrast and more metallic look; as it

was mentioned earlier, the “Fake” specular

uses more accurate diffuse approach.

Machine Phong

reflections

"Fake"

specular

Fast

"fake"

specular

Eee8G 33 30 49

Eee10HE 58 53 75

Eee15PN 73 65 95

Eee15PNi 78 88 102

LatD830 65 94 123

Vost1500 180 183 182

Prec4500 406 402 406

Cor2-18 264 232 287

Cor4-24 1028 1032 1032

Cor4-25 1655 1654 1657

Cel1200 95 91 109

Stu1535 52 72 96

DvT4200 105 105 127

Minimal Benefit 88% 100%

Maximum Benefit 145% 189%

Average Benefit 104% 128%

Table 2. Performance benchmarks for the first

application with different shading techniques

running directly on GPU using shaders. The

values are specified in frames per second.

As it can be seen from the results on Table 2,

the computers having weaker and cheaper

video cards are in greater benefit of the

proposed alternatives, while high-end video

cards have little benefit. In some cases, up to

89% increase in performance is observed

when using the fast “fake” specular technique.

Alternative Specular Approach for real-time rendering optimized for higher performance 30

In the second application, the different

lighting techniques were implemented in a

more advanced approach: per-pixel bump

mapping in shaders. In this approach, a

different P-Q Torus Knot model was rendered

textured using brick-shaped metallic texture.

The model has 10593 vertices and 20480

faces, again being few polygons so that the

majority of work is made in pixel shader. The

rendered image resolution was 512x512 with

8x multisampling. On desktop machines the

960x960 resolution was used instead. The

resulting rendering is shown below.

Figure 4. P-Q (3-4) Torus Knot rendered using

per-pixel bump mapping with a) Phong

reflections, b) “Fake” specular and c) Fast

“fake” specular.

From the images on Figure 4 it can be seen

that the proposed techniques produce

realistically looking results which to an

inexperienced viewer make look the same.

The performance, however, when using the

proposed techniques is a different story. It can

be noted that the “fake” specular technique,

which uses more accurate diffuse shading

produces image with higher contrast and more

metallic look. The performance results are

shown below.

Machine Phong

reflections

"Fake"

specular

Fast

"fake"

specular

Eee8G 41 41 44

Eee10HE 71 67 83

Eee15PN 93 88 112

Eee15PNi 126 140 148

LatD830 110 141 154

Vost1500 256 252 256

Prec4500 633 633 636

Cor2-18 135 134 136

Cor4-24 626 625 626

Cor4-25 1448 1446 1450

Cel1200 102 101 105

Stu1535 85 113 123

DvT4200 191 185 204

Minimal Benefit 94% 100%

Maximum Benefit 133% 145%

Average Benefit 104% 112%

Table 3. Performance benchmarks for the

second application with different shading

techniques running directly on GPU using

shaders illustrating per-pixel bump mapping.

The values are specified in frames per second.

31 Yuriy Kotsarenko, Humberto Andrade, Fernando Ramos

It can be seen from the results on Table 3 that

the proposed techniques produce better real-

time performance in more complex situations

as well. The benefit margin is smaller because

more weight is put on pixel shaders by

sampling the texture and calculating bump-

mapping parameters. Still, the majority of low-

end to mid-end video cards benefit from the

proposed techniques with up to 45% increase

in performance.

The previous two applications were

executed in shaders running directly on GPU.

However, in certain mobile devices the GPU

acceleration is not available. Therefore, in the

last application the different lighting techniques

were implemented in software running directly

on computer’s CPU. The application was

compiled in Embarcadero Delphi XE 2 with

compiler optimizations enabled and all

debugging information disabled. In total four

different approaches were used: 1) single-

threaded approach on 32-bit platform, 2)

single-threaded approach on 64-bit platform, 3)

multi-threaded approach on 32-bit platform and

3) multi-threaded approach on 64-bit platform.

In the single-threaded approaches, the

program calculated the final color for one

million vertices. In the multi-threaded

approaches, the program calculated the final

color for a million of vertices in each of the 64

threads that were run simultaneously. The

execution time was evaluated for each

instance. The benchmarking results for single-

threaded variant are shown below.

Machine

32-bit

Phong

reflections

"Fake"

specular

Fast

"fake"

specular

Eee8G 881.34 707.47 328.30

Eee10HE 868.73 507.57 244.23

Eee15PN 849.42 491.10 243.94

Eee15PNi 201.40 176.61 69.07

LatD830 263.24 217.16 88.05

Vost1500 140.47 120.18 55.65

Prec4500 268.80 242.17 94.14

Cor2-18 231.57 193.50 78.85

Cor4-24 158.84 146.39 64.91

Cor4-25 277.22 203.90 102.20

Cel1200 348.14 313.85 117.62

Stu1535 471.05 392.97 163.30

DvT4200 381.52 317.84 150.23

Minimal Benefit 109% 245%

Maximum Benefit 173% 356%

Average Benefit 127% 288%

Machine

64-bit

Phong

reflections

"Fake"

specular

Fast

"fake"

specular

LatD830 154.61 185.35 46.77

Prec4500 92.33 103.50 36.50

Cor4-24 163.13 195.46 49.68

Cor4-25 125.73 150.23 41.39

Stu1535 327.30 393.72 98.94

Minimal Benefit 83% 253%

Maximum Benefit 89% 331%

Average Benefit 85% 309%

Table 4. Performance benchmarks running

single-threaded lighting techniques for million

pixels on 32-bit and 64-bit platforms. The data

Alternative Specular Approach for real-time rendering optimized for higher performance 32

values are specified in milliseconds indicating

the total execution time of experiment.

The results shown on Table 4 illustrate the

performance increase with the proposed

techniques. It is evident that in some cases the

performance is increased dramatically

(sometimes three times faster and more!) by

using one of the proposed lighting techniques.

An interesting observation is that on 64-bit

platform the “fake” specular technique seems

slower, most likely due to arccosine function

being the bottleneck. The above table can be

used as a performance benchmark of different

CPUs when used in single-threaded mode.

However, for a more objective study it is

important to use multi-threading capabilities of

CPUs, which over past few years have grown

substantially. The results for multi-threaded

approach are shown below.

Machine

32-bit

Phong

reflections

"Fake"

specular

Fast

"fake"

specular

Eee8G 929.46 713.46 339.17

Eee10HE 555.89 298.64 166.40

Eee15PN 282.22 157.67 85.28

Eee15PNi 107.71 97.29 41.41

LatD830 133.89 113.36 50.03

Vost1500 50.14 39.07 24.82

Prec4500 144.82 125.96 50.48

Cor2-18 56.99 49.08 24.20

Cor4-24 41.19 37.34 24.49

Cor4-25 141.10 105.48 55.13

Cel1200 165.85 141.23 58.21

Stu1535 223.57 198.16 81.70

DvT4200 177.95 157.82 72.66

Minimal Benefit 110% 168%

Maximum Benefit 186% 334%

Average Benefit 129% 263%

Machine

64-bit

Phong

reflections

"Fake"

specular

Fast

"fake"

specular

LatD830 82.85 100.03 26.30

Prec4500 33.58 36.67 16.54

Cor4-24 46.84 56.92 16.14

Cor4-25 32.79 39.56 16.00

Stu1535 169.87 203.63 55.30

Minimal Benefit 82% 203%

Maximum Benefit 92% 315%

Average Benefit 85% 264%

Table 5. Performance benchmarks running

multi-threaded lighting techniques for million

pixels in each thread on 32-bit and 64-bit

platforms. The total number of threads was 64.

The data values are specified in milliseconds

indicating the total execution time of

experimental.

As it can be seen on Table 5, the performance

increase from using the proposed techniques

is also significant when multi-threading is used,

although to a lesser degree (most likely due to

cache contamination on CPUs with small

cache). It is also important to note that multi-

threading greatly increases the performance in

some cases. The above table can also be

used as a definitive performance guide to each

of the individual CPUs. For instance, from the

table it can be seen that Core i7 Q840 can

illuminate 62.5 million vertices (or pixels) using

fast “fake” technique per second on 64-bit

platform; in other words, filling the entire

1024x768 screen (and calculating the fast

“fake” lighting for each pixel) it can achieve

rendering speed of 794 frames per second

using multiple threads.

33 Yuriy Kotsarenko, Humberto Andrade, Fernando Ramos

5 Conclusions and future work

In this work several alternatives were proposed

to the classical lighting techniques. The

performance achieved with the proposed

lighting techniques is significantly higher both

on GPU and on CPU with the similar perceived

results. Although the proposed techniques are

not a full replacement to high quality specular

reflections using traditional approaches, they

can be used for performance-critical

applications and video games running on

budget hardware. The proposed “fake”

specular lighting produces diffuse-lit colors that

are more accurate than in the traditional

lighting techniques; although somewhat slower

in some special circumstances (such as on 64-

bit CPUs) and faster in others (GPU, 32-bit

CPUs) it produces realistic results. The fast

“fake” lighting technique is drastically faster

than the traditional Phong technique. A special

LOD-based approach can be used to mix both

one of the proposed alternatives and the

classical Phong technique for a hybrid

approach where distant objects use faster

alternative and closer objects are rendered

with a slower classical technique. In the

majority of cases it is difficult to determine

visually for an inexperienced viewer that the

used technique is not a true Phong reflection;

the only way to figure it out would be looking at

the light’s origin and then at object to see that

the reflection actually goes back to the light’s

origin. The last issue can be possibly mediated

by using two light origins per single light, one

being the original position for diffuse

component while another being calculated as

the average between the viewer and light’s

origin to be used for specular component,

simulating the moving reflection.

6 References

[1] Luna, Frank D. Introduction to 3D Game

Programming with Direct X 9.0c: A Shader

Approach. 1st edition. Jones & Bartlett

Publishers, 2006.

[2] OpenGL Architecture Review Board.

OpenGL(R) Reference Manual. 4th

Edition. Edited by Dave Shreiner.

Addison-Wesley Professional, 2004.

[3] Dempski, Kelly, and Emmanuel Viale.

Advanced Lighting and Materials with

Shaders. Jones & Bartlett Publishers,

2004.

[4] Lengyel, Eric. Mathematics for 3D Game

Programming and Computer Graphics.

2nd edition. Charles River Media, 2003.

[5] Hearn, Donald, and Pauline M. Baker.

Computer Graphics, C Version. Prentice

Hall, 1996.

[6] Hill, Francis S. Computer Graphics using

OpenGL. Prentice Hall, 2000.

[7] Lindbloom, Bruce J. "Accurate Color

Reproduction for Computer Graphics

Applications." Computer Graphics 23, no.

3 (July 1989): 117-126.

[8] Schanda, Janos. Colorimetry:

Understanding the CIE system. Wiley

Interscience, 2007.

[9] Kotsarenko, Yuriy, and Fernando Ramos.

"Simple perceptual color space for color

specification and real-time processing."

22nd General Congress of the

Alternative Specular Approach for real-time rendering optimized for higher performance 34

International Commission for Optics (ICO).

Puebla: SPIE, 2011.

[10] Kotsarenko, Yuriy, and Fernando Ramos.

"Measuring perceived color difference

using YIQ NTSC transmission color space

in mobile applications." Edited by Marco

Antonio Cruz Chávez. Programación

Matemática y Software 2, no. 2

(December 2010).

[11] Adams, Colin Conrad. The Knot Book: An

Elementary Introduction to the

Mathematical Theory of Knots. W. H.

Freeman & Company, 1994.

Dr. Yuriy Kotsarenko has a Ph.D. and M. Sc. in

Computer Sciences and Engineer Degree in

Computer Systems. His research is focused in

areas of computer vision, computer graphics,

optics and software engineering; he also

collaborates in several research works related

to robotics with interests in seismology,

agriculture and ecology.

He has developed numerous software projects

and have received certificates of the top places

in several international programming contests.

Eng. Humberto Andrade Barreto has Engineer

Degree in Computer Systems. He is currently

finishing his Ph.D. in Computer Systems at the

Instituto Tecnologico de Monterrey. His

research is focused in areas of computer

graphics, multi-agent systems and software

engineering.

He has participated in various software project

and has received certificates of the top places

in several local and international programming

contests.

Dr. Fernando Ramos Quintana is a senior

researcher at the Instituto Tecnologico de

Monterrey. He was the head of the Graduate

School on Computer Science and Engineering

at the Campus Cuernavaca. Prof. Ramos

holds a Masters and a Ph.D, Degree in

Robotics, from the Université de Franche

Comté, Besancon, France, and a Bachelor's

degree in Electronic Engineering from the

Mexican National Polytechnic Institute. He is

member of the National System of

Researchers from CONACyT-Mexico. His

research interests include the development of

interaction models in multi-agent systems,

computer assisted education and systems

biology.

